RESEARCH PAPER
A coarse Bayesian approach to evaluate luminescence ages
 
 
More details
Hide details
1
Centre de Recherche et de Restauration des Musées de France, Ministère de la Culture, CNRS, Palais du Louvre, Porte des lions, 14 quai F. Mitterrand, 75001, Paris, France
 
 
Online publication date: 2013-03-16
 
 
Publication date: 2013-06-01
 
 
Geochronometria 2013;40(2):90-100
 
KEYWORDS
ABSTRACT
This paper develops a simplified Bayesian approach to evaluate a luminescence age. We limit our purpose to the cause-effect relationship between the age and the accumulated dose. The accumulated dose is given as a function of the age and several others parameters: internal radionuclides contents, gamma dose rate, cosmic dose rate, alpha efficiency, wetness, conversion factors, wetness coefficients, fading rate and storage time. The age is the quantity we are looking for. Bayes’ theorem expresses the changes on the probability distribution of age due to the luminescence study. The information before study (prior) comprises what is previously known about the age and the archaeological model (cultural period, stratigraphic relations, type, etc.) as well as the parameters of the physical model. The accumulated dose consists in the data describing the measurement. The various stages of Bayesian approach were implemented using the software WinBugs. Simulated data sets were used in various models. We present various small models representing typical examples encountered in luminescence dating.
 
REFERENCES (42)
1.
Adamiec G and Aitken MJ, 1998. Dose-rate conversion factors: update. Ancient TL 16: 37–50.
 
2.
Aitken MJ, 1985. Thermoluminescence dating, Studies in Archaeological Science. Academic press, London.
 
3.
Aitken MJ, 1998. An introduction to Optical dating — The dating of quaternary sediments by the use of photon-stimulated luminescence. Oxford Science Publication. Oxford University Press, Oxford.
 
4.
Box GEP, 1980. Sampling and Bayes’ Inference in Scientific Modelling and Robustness. Journal of the Royal Statistical Society. Series A (General) 143: 383. http://dx.doi.org/10.2307/2982....
 
5.
Brooks S, Gelman A, Jones GL and Meng X-L (Eds.), 2011. Handbook of Markov Chain Monte Carlo — CRC Press Book. Chapman & Hall/CRC Handbooks of Modern Statistical Methods. CRC Press.
 
6.
Buck CE and Millard AR (Eds.), 2004. Tools for Constructing Chronologies, 1st ed, Lecture Note in Statistics. Springer, London.
 
7.
Buck CE, Cavanagh WG and Litton CD, 1996. Bayesian approach to interpreting archaeological data, Statistics in Practice. John Wiley & Sons, Inc., Chichester.
 
8.
Clark-Balzan LA, Candy I, Schwenninger J-L, Bouzouggar A, Blockley S, Nathan R and Barton RNE, 2012. Coupled U-series and OSL dating of a Late Pleistocene cave sediment sequence, Morocco, North Africa: Significance for constructing Palaeolithic chronologies. Quaternary Geochronology 12: 53–64, DOI 10.1016/j.quageo.2012.06.006. http://dx.doi.org/10.1016/j.qu....
 
9.
Cox RT, 1946. Probability, Frequency, and Reasonable Expectation. American Journal of Physics 14: 1–13, DOI 10.1119/1.1990764. http://dx.doi.org/10.1119/1.19....
 
10.
Gelman A and Shalizi CR, 2012. Philosophy and the practice of Bayesian statistics. British Journal of Mathematical and Statistical Psychology.
 
11.
Gelman A and Shirley K, 2011. Inference from simulations and monitoring convergence, in: Brooks S, Gelman A, Jones GL and Meng X-L (Eds.), Handbook of Markov Chain Monte Carlo — CRC Press Book, Chapman & Hall/CRC Handbooks of Modern Statistical Methods. CRC Press, pp. 163–174.
 
12.
Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38(7): 1093–1106, DOI 10.1139/e01-013. http://dx.doi.org/10.1139/e01-....
 
13.
Huntriss A, 2008. A Bayesian analysis of luminescence dating. PhD, University of Durham.
 
14.
Kerman J and Gelman A, 2006. Bayesian Data Analysis using R. Rnews 6: 21–24.
 
15.
Lanos P, 2004. Bayesian inference of calibration curves: Application to Archaeomagnetism, in: Buck CE and Millard AR (Eds.), Tools for Constructing Chronologies, Lecture Note in Statistics. Springer, London, pp. 43–82. http://dx.doi.org/10.1007/978-....
 
16.
Lunn D, Spiegelhalter D, Thomas A and Best N, 2009. The BUGS project: Evolution, critique and future directions. Statistics in Medicine 28(25): 3049–3067, DOI 10.1002/sim.3680. http://dx.doi.org/10.1002/sim.....
 
17.
Millard AR, 2004. Taking Bayes beyond radiocarbon: Bayesian approaches to some other chronometric methods, in: Buck, CE, Millard AR (Eds.), Tools for Constructing Chronologies, Lecture Note in Statistics. Springer, London, pp. 231–248. http://dx.doi.org/10.1007/978-....
 
18.
Millard AR, 2006a. Bayesian analysis of pleistocene chronometric methods. Archaeometry 48(2): 359–375, DOI 10.1111/j.1475-4754.2006.00261.x. http://dx.doi.org/10.1111/j.14....
 
19.
Millard AR, 2006b. Bayesian analysis of ESR dates, with application to Border Cave. Quaternary Geochronology 1(2): 159–166, DOI 10.1016/j.quageo.2006.03.002. http://dx.doi.org/10.1016/j.qu....
 
20.
Murray AS and Wintle AG, 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37(4–5): 377–381, DOI 10.1016/S1350-4487(03)00053-2. http://dx.doi.org/10.1016/S135....
 
21.
Nicholls G and Jones M, 2001. Radiocarbon dating with temporal order constraints. Journal of the Royal Statistical Society: Series C (Applied Statistics) 50(4): 503–521, DOI 10.1111/1467-9876.00250. http://dx.doi.org/10.1111/1467....
 
22.
Orton C, 1980. Mathematics in Archaeology. 1st ed, Collins archaeolgy. Wiliams Collins Sons & Co, London.
 
23.
Popper K, 1982. La logique de la découverte scientifique (The logic of scientific discovery). 2nd French ed. Payot, Paris (in French).
 
24.
Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23(2–3): 497–500, DOI 10.1016/1350-4487(94)90086-8,. http://dx.doi.org/10.1016/1350....
 
25.
Preusser F, Degering D, Fuchs M, Hilgers A, Kadereit A, Klasen N, Krbetschek M, Richter D and Spencer JQG, 2008. Luminescence dating: basics, methods and applications. Quaternary Science Journal 57(1–2): 95–149, DOI 10.3285/eg.57.1-2.5.
 
26.
R Development Core Team, 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, WEB site: <http://www.R-project.org>. Accessed 2010 April 14.
 
27.
Rhodes EJ, Bronk Ramsey C, Outram Z, Batt C, Willis L, Dockrill S and Bond J, 2003. Bayesian methods applied to the interpretation of multiple OSL dates: high precision sediment ages from Old Scatness Broch excavations, Shetland Isles. Quaternary Science Reviews 22(10–13): 1231–1244, DOI 10.1016/S0277-3791(03)00046-5. http://dx.doi.org/10.1016/S027....
 
28.
Sivia DS, Burbidge C, Roberts RG and Bailey RM, 2004. A Bayesian approach to the evaluation of equivalent doses in sediment mixtures for luminescence dating, in: AIP Conference Proceedings. p. 305. http://dx.doi.org/10.1063/1.18....
 
29.
Sommer KD and Siebert BRL, 2006. Systematic approach to the modelling of measurements for uncertainty evaluation. Metrologia 43(4): S200–S210, DOI 10.1088/0026-1394/43/4/S06. http://dx.doi.org/10.1088/0026....
 
30.
Spiegelhalter D, Thomas A, Best N and Gilks W, 1996. BUGS 0.5: Bayesian inference using Gibbs sampling manual (version ii). MRC Biostatistics Unit, Institute of Public Health, Cambridge, UK.
 
31.
Steel D, 2001. Bayesian statistics in radiocarbon calibration. Philisophy of Sciences 68(3): S153–S164. http://dx.doi.org/10.1086/3929....
 
32.
Van Strydonck M, Moor AD and Benazeth D, 2004. 14C dating compared to art historical dating of roman and coptic textiles from egypt. Radiocarbon 46: 231–244.
 
33.
Wintle AG, 1973. Anomalous Fading of Thermoluminescence in Mineral Samples. Nature 245: 143–144, DOI 10.1038/245143a0. http://dx.doi.org/10.1038/2451....
 
34.
Wintle AG, 2008. Luminescence dating of Quaternary sediments — Introduction. Boreas 37(4): 469–470, DOI 10.1111/j.1502-3885.2008.00060.x. http://dx.doi.org/10.1111/j.15....
 
35.
Zimmerman DW, 1971. Thermoluminescent Dating Using Fine Grains from Pottery. Archaeometry 13(1), 29–52, DOI 10.1111/j.1475-4754.1971.tb00028.x. http://dx.doi.org/10.1111/j.14....
 
36.
Zink A, 2008. Uncertainties on the Luminescence Ages and Anomalous Fading. Geochronometria 32: 47–50, DOI 10.2478/v10003-008-0027-4. http://dx.doi.org/10.2478/v100....
 
37.
Zink A, 2009. Luminescence date and archaeological ages: An epistemology of the luminescence dating. in: Cavulli F, Prudêncio MI, DIAS MI (Eds.), Defining a Methodological Approach to Interpret Structural Evidence; Archaeometry, British Archaeological Report. Presented at the XV UISPP World Congress (Lisbon, 4–9 September 2006) / XV Congrès Mondial (Lisbonne, 4–9 Septembre 2006, Vol 32, Sessions WS28, C69, C70 and C71., Archaeopress, pp. 113–116.
 
38.
Zink A and Porto E, 2005. Luminescence dating of the Tanagra terracottas of the Louvre collections. Geochronometria 24: 21–26.
 
39.
Zink AJC, Dabis S, Porto E and Castaing J, 2010. Alpha efficiency under TL and OSL — A subtraction technique using OSL and TL to detect artificial irradiation. Radiation Measurements 45(3–6): 649–652, DOI 10.1016/j.radmeas.2010.01.017. http://dx.doi.org/10.1016/j.ra....
 
40.
Zink AJC and Porto E, submitted. Bayesian Approach or Robust Bayesian analysis? Quaternary Geochronology.
 
41.
Zink AJC, Porto E, Genevey A, Gallet Y, Rante R and Collinet A, submitted. Absolute chronology of Nishapur’s Citadel (Iran). Contribution of luminescence dating and archaeomagnetic analysis. Quaternary Geochronology.
 
42.
Zink AJC, Susino GJ, Porto E and Huffman TN, 2012. Direct OSL dating of Iron Age pottery from South Africa — Preliminary dosimetry investigations. Quaternary Geochronology 8: 1–9, DOI 10.1016/j.quageo.2011.11.008. http://dx.doi.org/10.1016/j.qu....
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top