RESEARCH PAPER
Age constraints and denudation rate of a multistage fault line scarp: an example from Southern Italy
 
More details
Hide details
1
Dipartimento di Scienze, University of Basilicata, Campus Macchia Romana, Via dell’Ateneo Lucano, 10, I-85100, Potenza, Italy
 
 
Online publication date: 2014-06-22
 
 
Publication date: 2014-09-01
 
 
Geochronometria 2014;41(3):245-255
 
KEYWORDS
ABSTRACT
The morphological evolution of a carbonate fault line scarp from southern Italy, generated by transpressional faulting and evolved by slope replacement, has been reconstructed. 14C dating of faulted slope deposits (ages included between 18 ka and ∼8 ka BP) have been performed to constrain the Late Pleistocene — Holocene evolution of that scarp. Long-to short-term denudation rates have been also evaluated for the understanding of the mountain front origin. The slope shows well-defined triangular facets combined with the presence of N-S-striking mountainward-dipping fault planes. The envelope of the slope foot appears slightly curved in a planimetric view and shows an E-W-trending offset in its southern part, making such a feature quite different from the recurrent rectilinear fault scarps, often related to normal faulting. Morphostructural analysis showed that: i) the oldest displacement was generated by a fault with a reverse component of movement; ii) the slope represents an inherited feature, only recently exhumed, and developed starting from a high-angle curved surface; iii) the upper Pleistocene — Holocene extensional faulting has only affected the slope foot and associated waste deposits, causing a series of collateral morphological effects, as fluvial cut of preexisting valleys and the genesis of conspicuous mass movements.
REFERENCES (47)
1.
Aldega L, Corrado S, Di Leo P, Giampaolo C, Invernizzi C, Martino C, Mazzoli S, Schiattarella M and Zattin M, 2005. The southern Apennines case history: thermal constraints and reconstruction of tectonic and sedimentary burials. Atti Ticinensi di Scienze della Terra 10: 45–53.
 
2.
Amato A, Aucelli PPC and Cinque A, 2003. The longterm denudation rate in the Southern Apennines Chain (Italy): a GIS-aided estimation of the rock volumes eroded since middle Pleistocene time. Quaternary International 101–102: 3–11, DOI 10.1016/S1040-6182(02)00087-3. http://dx.doi.org/10.1016/S104....
 
3.
Ascione A and Cinque A, 1997. Le scarpate su faglia dell’Appennino meridionale: genesi, età e significato tettonico (Fault scarps from the southern Apennines: origin, age, and tectonic significance). Il Quaternario, Italian Journal of Quaternary Sciences 10: 285–292 (in Italian).
 
4.
Ascione A and Cinque A, 2003. Le variazioni geomorfologiche indotte dalla tettonica recente in Appennino meridionale (Morphological changes induced by recent tectonics in the southern Apennines). Il Quaternario, Italian Journal of Quaternary Sciences 16: 133–140 (in Italian).
 
5.
Athanassios G, Shanov S, Drakatos G, Dobrev N, Sboras S, Tsimi C, Frangov G and Pavlides S, 2005. Active fault segmentation in southwest Bulgaria and Coulomb stress triggering of the 1904 earthquake sequence. Journal of Geodynamics 40(2–3): 316–333, DOI 10.1016/j.jog.2005.07.017. http://dx.doi.org/10.1016/j.jo....
 
6.
Boenzi F, Capolongo D, Cecaro G, D’Andrea E, Giano SI, Lazzari M and Schiattarella M, 2004. Evoluzione geomorfologica polifasica e tassi di sollevamento del bordo sudoccidentale dell’alta Val d’Agri, Appennino meridionale (Morphostructural evolution and uplift rates of the western side of the upper Agri River valley, southern Apennines, Italy). Bollettino della Società Geologica Italiana, Italian Journal of Geosciences 123: 357–372 (in Italian).
 
7.
Brancaccio L, Cinque A and Sgrosso I, 1978. L’analisi morfologica dei versanti come strumento per la ricostruzione degli eventi neotettonici (Morphological analysis of slopes as a tool for the reconstruction of neotectonic events). Memorie della Società Geologica Italiana 19: 621–626 (in Italian).
 
8.
Brancaccio L, Cinque A and Sgrosso I, 1979. Forma e genesi di alcuni versanti di faglia in rocce carbonatiche: il riscontro naturale di un modello teorico (Landforms and genesis of some fault slopes in carbonate rocks: the natural response of a theoretical model). Rendiconti Accademia Scienze Fisiche e Matematiche serie IV 46: 1–21 (in Italian).
 
9.
Brancaccio L, Cinque A and Sgrosso I, 1986. Elementi morfostrutturali ereditati nel paesaggio dell’Appennino centromeridionale (Inherited morphostructural elements in the landscape of the central-southern Apennines). Memorie della Società Geologica Italiana 35: 869–874 (in Italian).
 
10.
Bronk Ramsey C and Lee S, 2013. Recent and Planned Developments of the Program OxCal. Radiocarbon 55(2–3): 720–773.
 
11.
Brunsden D (Ed), 1971. Slope: Form and Process. Institute of British Geographers Spec. Publ. 3: 178 pp.
 
12.
Burbank DW and Anderson RS, 2001. Tectonic Geomorphology. Blackwell Science, 274 pp.
 
13.
Ciaranfi N, Lirer F, Lirer L, Lourens LJ, Maiorano P, Marino M, Petrosino P, Sprovieri M, Stefanelli S, Brilli M, Girone A, Joannin S, Pelosi N and Vallefuoco M, 2010. Integrated stratigraphy and astronomical tuning of lower-middle Pleistocene Montalbano Jonico section (southern Italy). Quaternary International 219(1–2): 109–120, DOI 10.1016/j.quaint.2009.10.027. http://dx.doi.org/10.1016/j.qu....
 
14.
Cinque A, Patacca E, Scandone P and Tozzi M, 1993. Quaternary kinematic evolution of the Southern Apennines. Relationships between surface geological features and deep lithospheric structures. Annali di Geofisica 36: 249–260.
 
15.
Cotton CA, 1950. Tectonic scarps and fault valleys. Geological Society of America Bulletin 61(7): 717–757, DOI 10.1130/0016-7606(1950)61[717:TSAFV]2.0.CO;2. http://dx.doi.org/10.1130/0016....
 
16.
Di Leo P, Gioia D, Martino C, Pappalardo A and Schiattarella M, 2011. Geomorphological, mineralogical, and geochemical evidence of Pleistocene weathering conditions in the southern Italian Apennines. Geologica Carpathica 62(1): 43–53, DOI 10.2478/v10096-011-0004-0.
 
17.
Di Nocera S, Russo B and Torre M, 1982. I depositi marini del ciclo Pliocene inferioremedio nei dintorni di Vietri di Potenza (Lower-middle Pliocene marine deposits near Vietri di Potenza). Rendiconti Accademia Scienze Fisiche e Matematiche 45: 87–105 (in Italian).
 
18.
Font M, Lagarde JL, Amorese, D, Coutard J-P, Dubois A, Guillemet G, Ozouf JC and Vedie E, 2006. Physical modelling of fault scarp degradation under freezethaw cycles. Earth Surface Processes and Landforms 31(14): 1731–1745, DOI 10.1002/esp.1371. http://dx.doi.org/10.1002/esp.....
 
19.
Giano SI and Martino C, 2003. Assetto morfotettonico e morfostratigrafico di alcuni depositi continentali pleistocenici del bacino del Pergola-Melandro, Appennino Lucano (Morphostructural and morphostratigraphic setting of Pleistocene continental deposits of the Pergola-Melandro basin, Lucanian Apennine). Il Quaternario, Italian Journal of Quaternary Sciences 16: 289–297 (in Italian).
 
20.
Giano SI, Maschio L, Alessio M, Ferranti L, Improta S and Schiattarella M, 2000. Radiocarbon dating of active faulting in the Agri high valley, southern Italy. Journal of Geodynamics 29(3–5): 371–386, DOI 10.1016/S0264-3707(99)00058-7. http://dx.doi.org/10.1016/S026....
 
21.
Gioia D, Martino C and Schiattarella M, 2011. Long-to short-term denudation rates in the southern Apennines: geomorphological markers and chronological constraints. Geologica Carpathica 62(1): 27–41, DOI 10.2478/v10096-011-0003-1. http://dx.doi.org/10.2478/v100....
 
22.
Hartvich F and Mentlík P, 2010. Slope development reconstruction at two sites in the Bohemian Forest Mountains. Earth Surface Processes and Landforms 35(4): 373–389, DOI 10.1002/esp.1932.
 
23.
Hartvich F and Valenta J, 2013. Tracing an intra-montane fault: an interdisciplinary approach. Surveys in Geophysics 34(3): 317–347, DOI 10.1007/s10712-012-9216-9. http://dx.doi.org/10.1007/s107....
 
24.
Johnson D, 1939. Fault scarps and fault-line scarps. Journal of Geomorphology 2: 174–177.
 
25.
Kirkby MJ, 1971. Hillslope process-response models based on the continuity equation. In: Brunsden D, ed., Slope: Form and Process. Institute of British Geographers Special Publication n. 3: 15–30.
 
26.
Kirkby MJ, 1984. Modelling cliff development in South Wales: Savigear reviewed. Zeitschrift für Geomorphologie 28: 405–426.
 
27.
Krzyszkowski D and Stachura R, 1998. Neotectonically controlled fluvial features, Walbrzych: Middle Sudeten Mts, southwestern Poland. Geomorphology 22(1): 73–91, DOI 10.1016/S0169-555X(97)00040-8. http://dx.doi.org/10.1016/S016....
 
28.
Lazzari M and Schiattarella M, 2010. Estimating long to short-term erosion rates of fluvial vs mass movement processes: an example from the axial zone of the southern Italian Apennines. Italian Journal of Agronomy 5: 57–66, DOI 10.4081/ija.2010.s3.57. http://dx.doi.org/10.4081/ija.....
 
29.
Machette MN, 2000. Active, capable, and potentially active faults — a paleoseismic perspective. Journal of Geodynamics 29(3–5): 387–392, DOI 10.1016/S0264-3707(99)00060-5. http://dx.doi.org/10.1016/S026....
 
30.
Martino C, Nico G and Schiattarella M, 2009. Quantitative analysis of InSAR Digital Elevation Models for identification of areas with different tectonic activity in southern Italy. Earth Surface Processes and Landforms 34(1): 3–15, DOI 10.1002/esp.1681. http://dx.doi.org/10.1002/esp.....
 
31.
Martino C and Schiattarella M, 2006. Aspetti morfotettonici dell’evoluzione geomorfologica della valle del Melandro, Appennino campanolucano (Morphotectonics and Quaternary geomorphological evolution of the Melandro Valley, southern Apennines, Italy). Il Quaternario, Italian Journal of Quaternary Sciences 19: 119–128 (in Italian).
 
32.
Martino C and Schiattarella M, 2010. Relationships among climate, uplift and palaeo-landslides generation in the Melandro River basin, southern Apennines, Italy. Geografia Fisica e Dinamica Qua-ternaria 33: 37–43.
 
33.
Mazzoli S, D’Errico M, Aldega L, Corrado S, Invernizzi C, Shiner P and Zattin M, 2008. Tectonic burial and “young” (<10 Ma) exhumation in the southern Apennines fold-and-thrust belt (Italy). Geology 36(3): 243–246, DOI 10.1130/G24344A.1. http://dx.doi.org/10.1130/G243....
 
34.
McCalpin JP and Berry ME, 1996. Soil catenas to estimate ages of movements on normal fault scarps, with an example from the Wasatch fault zone, Utah, USA. Catena 27(3–4): 265–286, DOI 10.1016/0341-8162(96)00020-3. http://dx.doi.org/10.1016/0341....
 
35.
Moro M, Amicucci L, Cinti FR, Doumaz F, Montone P, Pierdominici S, Saroli M, Stramondo S and Di Fiore B, 2007. Surface evidence of active tectonics along the Pergola-Melandro fault: A critical issue for the seismogenic potential of the southern Apennines, Italy. Journal of Geodynamics 44(1–2): 19–32, DOI 10.1016/j.jog.2006.12.003. http://dx.doi.org/10.1016/j.jo....
 
36.
Ortuño M, Queralt P, Martí A, Ledo J, Masana E, Perea H and Santanach P, 2008. The North Maladeta Fault (Spanish Central Pyrenees) as the Vielha 1923 earthquake seismic source: Recent activity revealed by geomorphological and geophysical research. Tectonophysics 453(1–4): 246–262, DOI 10.1016/j.tecto.2007.06.016. http://dx.doi.org/10.1016/j.te....
 
37.
Pescatore T, Renda P, Schiattarella M and Tramutoli M, 1999. Stratigraphic and structural relationships between Meso-Cenozoic Lagonegro basin and coeval carbonate platforms in southern Apennines, Italy. Tectonophysics 315(1–4): 269–286, DOI 10.1016/S0040-1951(99)00278-4. http://dx.doi.org/10.1016/S004....
 
38.
Reimer PJ, Bard E, Bayliss A, Beck W, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J, 2013. Intcal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years Cal BP. Radiocarborn 55(4): 1869–1887. http://dx.doi.org/10.2458/azu_....
 
39.
Ruggieri G, Rio D and Sprovieri R, 1984. Remarks on the chronostrati-graphic classification of lower Pleistocene. Bollettino della Società Geologica Italiana 103: 251–259.
 
40.
Russo F and Schiattarella M, 1992. Osservazioni preliminari sull’evoluzione morfostrutturale del bacino di Castrovillari, Calabria settentrionale (Preliminary data on the morphostructural evolution of the Castrovillari basin, Northern Calabria, Italy). Studi Geologici Camerti Spec. Vol. 1992/1: 271–278 (in Italian).
 
41.
Schiattarella M, 1998. Quaternary tectonics of the Pollino Ridge, Calabria-Lucania boundary, southern Italy. In: Holdsworth RE, Stra-chan RA and Dewey JF, eds., Continental Transpressional and Transtensional Tectonics. Geological Society of London Spec. Vol. 135: 341–354.
 
42.
Schiattarella M, Beneduce P, Capolongo D, Di Leo P, Giano SI, Gioia D, Lazzari M and Martino C, 2008. Uplift and erosion rates from the southern Apennines, Italy. Bollettino di Geofisica Teorica ed Applicata 49(2): 470–475.
 
43.
Schiattarella M, Di Leo P, Beneduce P and Giano SI, 2003. Quaternary uplift vs tectonic loading: a casestudy from the Lucanian Apennine, southern Italy. Quaternary International 101–102: 239–251, DOI 10.1016/S1040-6182(02)00126-X. http://dx.doi.org/10.1016/S104....
 
44.
Schiattarella M, Di Leo P, Beneduce P, Giano SI and Martino C, 2006. Tectonically driven exhumation of a young orogen: An example from the southern Apennines, Italy. In: Willett SD, Hovius N, Brandon MT and Fisher DM, eds., Tectonics, climate, and landscape evolution. Geological Society of America Special Paper 398: 371–385.
 
45.
Shanov SB and Dobrev ND, 1997. Impact of the seismic processes on the movements along the Kroupnik fault zone (SW Bulgaria). Comptes rendus de l’Académie bulgare des Sciences 6: 95–98.
 
46.
Wallace RE, 1977. Profiles and ages of young fault scarps, north-central Nevada. Geological Society of America Bulletin 88(9): 1267–1281, DOI 10.1130/0016-7606(1977)88〈1267:PAAOYF〉2.0.CO;2. http://dx.doi.org/10.1130/0016...<1267:PAAOYF>2.0.CO;2.
 
47.
Young A, 1972. Slopes. Oliver & Boyds Edimburg: 1–288.
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top