RESEARCH PAPER
An Overview of Red-Thermoluminescence (RTL) Studies on Heated Quartz and RTL Application to Dosimetry and Dating
 
More details
Hide details
1
Faculty of Science, Niigata University, Ikarashi-ninomachi, Niigata 950-2181, Japan
 
 
Online publication date: 2008-06-05
 
 
Publication date: 2008-01-01
 
 
Geochronometria 2008;30:9-16
 
KEYWORDS
ABSTRACT
The RTL-phenomena in quartz grains were initially reported and their properties and applications were developed by our group. Although RTL-measurements had the difficulty of overcoming high background counts due to blackbody radiation, the excellent dose linearity and hard-to-bleaching nature of quartz RTL are suitable for accurate retrospective dosimetry and dating of burnt archaeological materials. In his paper, the discovery of RTL-phenomena is described. Subsequently, the construction and features of an automatic luminescence measuring system are mentioned together with innovative methods of decreasing the background level for the RTL measurement. Practical applications to dosimetry and dating are then described from the viewpoints of the preferable nature of RTL in comparison to other luminescence observations. Finally, some recent advances in RTL research are presented based on their emission mechanism correlated with impurity contents.
REFERENCES (49)
1.
Aitken MJ, 1998. An Introduction to Optical Dating. The Dating of Quaternary Sediments by the Use of Photon-stimulated Luminescence. Oxford, Oxford University Press: 267pp.
 
2.
Andersen CE, Boetter-Jensen L and Murray AS, 2003. A mini X-ray generator as an alternative to a 90Sr/90Y source in luminescence dating. Radiation Measurements 37(4-5): 557-561, DOI 10.1016/S1350-4487(03)00022-2.10.1016/S1350-4487(03)00022-2.
 
3.
Boetter-Jensen L, 1997. Luminescence techniques: instrumentation and methods. Radiation Measurements 27(5-6): 749-768, DOI 10.1016/S1350-4487(97)00206-0.10.1016/S1350-4487(97)00206-0.
 
4.
Boetter-Jensen L and Murray AS, 2001. Optically stimulated emission techniques in retrospective dosimetry. Radiation Physics and Chemistry 61(3-6): 181-190, DOI 10.1016/S0969-806X(01)00239-0.10.1016/S0969-806X(01)00239-0.
 
5.
Boetter-Jensen L, Andersen CE, Duller GAT and Murray AS, 2003. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiation Measurements 37(4-5): 535-541, DOI 10.1016/S1350-4487(03)00020-9.10.1016/S1350-4487(03)00020-9.
 
6.
Fattahi M and Stokes S, 2000a. Extending the time range of luminescence dating using red TL (RTL) from volcanic quartz. Radiation Measurements 32(5-6): 479-485, DOI 10.1016/S1350-4487(00)00105-0.10.1016/S1350-4487(00)00105-0.
 
7.
Ganzawa Y, Furukawa H, Hashimoto T, Sanzelle S, Miallier D and Pilleyre T, 2005. Single grains dating of volcanic quartz from pyroclastic flows using red TL. Radiation Measurements 39(5): 479-487, DOI 10.1016/j.radmeas.2004.10.012.10.1016/j.radmeas.2004.10.012.
 
8.
Hashimoto T, Hayashi Y, Koyanagi A, Yokosaka K and Kimura K, 1986a. Red and blue colouration of thermoluminescence from natural quartz sands. Nuclear Tracks and Radiation Measurements 11(4-5): 229-235, DOI 10.1016/1359-0189(86)90039-7.10.1016/1359-0189(86)90039-7.
 
9.
Hashimoto T, Koyanagi A, Yokosaka K, Hayashi Y and Sotobayashi T, 1986b. Thermoluminescence colour images from quartz of beach sand. Geochememical Journal 20(3): 111-118.10.2343/geochemj.20.111.
 
10.
Hashimoto T, Yokosaka K and Habuki H, 1987. Emission properties of thermoluminescence from natural quartz - blue and red TL response to absorbed dose. Nuclear Tracks and Radiation Measurements 13(1): 57-66, DOI 10.1016/1359-0189(87)90008-2.10.1016/1359-0189(87)90008-2.
 
11.
Hashimoto T, Yokosaka K, Habuki H and Hayashi Y, 1989a. Provenance search of dune sands using thermoluminescence colour images (TLCIs) from quartz grains. Nuclear Tracks and Radiatation Measurements 16(1): 3-10, DOI 10.1016/1359-0189(89)90003-4.10.1016/1359-0189(89)90003-4.
 
12.
Hashimoto T, Habuki H, Tanabe I, Sakai T and Takahashi S, 1989b. Dating using red thermoluminescence from quartz grains in strata related to fossil bones of Elephas Naumanni. Chikyukagaku (Geochemistry) 23: 35-43 (in Japanese).
 
13.
Hashimoto T, Sakai T, Shirai N, Sakaue S and Kojima M, 1991. Thermoluminescent spectrum changes of natural quartzes dependent on annealing treatment and aluminium contents. Analytical Sciences 7(5): 687-690, DOI 10.2116/analsci.7.687.10.2116/analsci.7.Supple_687.
 
14.
Hashimoto T, Kojima M, Shirai N and Ichino M, 1993. Activation energies from blue- and red-thermoluminescence (TL) of quartz grains and mean lives of trapped electrons related to natural red-TL. Nuclear Tracks and Radiation Measurements 21(2): 217-223, DOI 10.1016/1359-0189(93)90165-6.10.1016/1359-0189(93)90165-6.
 
15.
Hashimoto T, Notoya S, Arimura T and Konishi M, 1996. Changes in luminescence colour images from quartz slices with thermal annealing treatments. Radiation Measurements 26(2): 233-242, DOI 10.1016/1350-4487(95)00300-2.10.1016/1350-4487(95)00300-2.
 
16.
Hashimoto T, Katayama H, Sakaue H, Hase H, Arimura T and Ojima T, 1997. Dependence of some radiation-induced phenomena from natural quartz on hydroxyl-impurity contents. Radiation Measurements 27(2): 243-250, DOI 10.1016/S1350-4487(96)00115-1.10.1016/S1350-4487(96)00115-1.
 
17.
Hashimoto T, Yasuda K, Sato K, Sakaue H and Katayama H, 1998. Radiation-induced luminescence images and TL-property change with thermal annealing treatment on Japanese twin quartz. Radiation Measurements 29(5): 493-502, DOI 10.1016/S1350-4487(98)00065-1.10.1016/S1350-4487(98)00065-1.
 
18.
Hashimoto T, Nakagawa T, Hong DG and Takano M, 2002a. An automated system for both red/blue thermoluminescence and optically stimulated luminescence measurement. Journal of Nuclear Science and Technology 39(1): 108-109, DOI 10.3327/jnst.39.108.10.1080/18811248.2002.9715163.
 
19.
Hashimoto T, Nakagawa T, Usuda H and Yawata T, 2002b. Development of an automated system equipped with a small X-ray irradiator for red/blue thermoluminescence measurement from natural minerals. BUNSEKI KAGAKU 51: 625-632 (in Japanese).10.2116/bunsekikagaku.51.625.
 
20.
Hashimoto T, Yamaguchi T, Fujita H and Yanagawa Y, 2003. Comparison of infrared spectrometric characteristics of Al-OH impurities and thermoluminescence patterns in natural quartz slices at temperatures below 0°C. Radiation Measurements 37(4-5): 479-485, DOI 10.1016/S1350-4487(03)00061-1.10.1016/S1350-4487(03)00061-1.
 
21.
Hashimoto T, Yawata T and Takano M, 2005. Comparison of naturally accumulated radiation-doses between RTL, BTL, OSL, and IRSL using white minerals from burnt archaeological materials and usefulness of RTL-dating from quartz extracts. Geochemical Journal 39(3): 201-212.10.2343/geochemj.39.201.
 
22.
Hashimoto T, Fujita H, Sakaue H, Nakata Y and Nomura S, 2006a. Comparison of accumulated doses in quartz and feldspar extracts from atomic bomb-exposed roof tiles using several luminescence methods. Radiation Measurements 41(7-8): 1015-1019, DOI 10.1016/j.radmeas.2006.06.002.10.1016/j.radmeas.2006.06.002.
 
23.
Hashimoto T, Yamaguchi T, Tajika Y, Takeuchi A and Yawata T, 2006b. Behavior of TL glow curves for natural quartz samples from liquid-nitrogen temperature up to room temperature. Radiation Measurements 41(6): 671-676, DOI 10.1016/j.radmeas.2006.04.011.10.1016/j.radmeas.2006.04.011.
 
24.
Hashimoto T and Tamaki M, 2007. Preferable red thermoluminescence dating using quartz extracts from archaeological roof-tiles in Heijokyo ruin and thermoluminescence sensitivity comparison between quartz and feldspar fractions. Radioisotopes 56: 47-56 (in Japanese).10.3769/radioisotopes.56.47.
 
25.
Hashimoto T, Sakaue H, Takeuchi T and Mitamura N, 2007a. Thermoluminescence (TL)-glowcurves from some feldspars and stability of far-red TL from albite. Radioisotopes 56: 7-16.10.3769/radioisotopes.56.7.
 
26.
Hashimoto T, Yamaguchi T and Yawata T, 2007b. Blue and red thermoluminescence of natural quartz in the temperature region from - 196°C to 400°C. Radiation Measurements 42(3): 341-346, DOI 10.1016/j.radmeas.2007.02.06.10.1016/j.radmeas.2007.02.064.
 
27.
Krbetschek MR, Goetze J, Dietrich A and Trautmann T, 1997. Spectral information from minerals relevant for luminescence dating. Radiation Measurements 27(5-6): 653-748, DOI 10.1016/S1350-4487(97)00223-0.10.1016/S1350-4487(97)00223-0.
 
28.
Lai Z-P and Murray A, 2006. Red TL of quartz extracted from Chinese loess: Bleachability and saturation dose. Radiation Measurements 41(7-8): 836-840, DOI 10.1016/j.radmeas.2006.04.017.10.1016/j.radmeas.2006.04.017.
 
29.
Miallier D, Fain J, Montret M, Sanzelle S and Soumana S, 1991. Properties of the red TL peak of quartz relevant to thermoluminescence dating. Nuclear Tracks and Radiation Measurements 18(1-2): 89-94, DOI 10.1016/1359-0189(91)90098-3.10.1016/1359-0189(91)90098-3.
 
30.
Miallier D, Fain J, Montret M, Pilleyre T, Sanzelle S, and Soumana S, 1994a. Sun bleaching of the red TL of quartz: preliminary observations. Ancient TL 12: 1-4.
 
31.
Miallier D, Fain J, Sanzelle S, Pilleyre T, Montre M, Soumana S and Falgueres C, 1994b. Attempts at dating pumice deposits around 580 ka by use of red TL and ESR of xenolithic quartz inclusions. Radiation Measurements 23(2-3): 399-404, DOI 10.1016/1350-4487(94)90070-1.10.1016/1350-4487(94)90070-1.
 
32.
Pilleyre T, Montret M, Fain J, Miallier D and Sanzelle S, 1992. Attempts at dating ancient volcanoes using the red TL of quartz. Quaternary Science Reviews 11(1-2): 13-17, DOI 10.1016/0277-3791(92)90036-8.10.1016/0277-3791(92)90036-8.
 
33.
Rink WJ, Rendell H, Marseglia EA, Luff BJ and Townsend PD, 1993. Thermoluminescence spectra of igneous quartz and hydrothermal vein quartz. Physics and Chemistry of Minerals 20(5): 353-361, DOI 10.1007/BF00215106.10.1007/BF00215106.
 
34.
Roesch WC, 1987. US-Japan Joint Reassessment of Atomic Bomb Radiation Dosimetry in Hiroshima and Nagasaki (DS86). Final report.Radiation Effects Research Foundation, vol. 1: 432 pp.
 
35.
Scholefield RB and Prescott JR, 1999. The red thermoluminescence of quartz: 3-D spectral measurements. Radiation Measurements 30(1): 83-95, DOI 10.1016/S1350-4487(98)00094-8.10.1016/S1350-4487(98)00094-8.
 
36.
Stokes S and Fattahi M, 2003. Red emission luminescence from quartz and feldspar for dating applications: an overview. Radiation Measurements 37(4-5): 383-395, DOI 10.1016/S1350-4487(03)00060-X.10.1016/S1350-4487(03)00060-X.
 
37.
Tajika Y and Hashimoto T, 2006. Correlation of blue-thermoluminescence (BTL) properties with some impurities in synthetic quartz. Radiation Measurements 41(7-8): 809-812, DOI 10.1016/j.radmeas.2006.05.014.10.1016/j.radmeas.2006.05.014.
 
38.
Takeuchi T and Hashimoto T, 2008. Construction of a portable mini luminescence-measuring system installed with a handy X-ray generator. Geochronometria 30: 17-22, DOI 10.2478/v10003-008-0012-y.10.2478/v10003-008-0012-y.
 
39.
Westaway KE and Roberts RG, 2006. A dual-aliquot regenerative-dose protocol (DAP) for thermoluminescence (TL) dating of quartz sediments using the light-sensitive and isothermally stimulated red emissions. Quaternary Science Reviews 25(19-20): 2513-2528, DOI 10.1016/j.quascirev.2005.06.010.10.1016/j.quascirev.2005.06.010.
 
40.
Yawata T and Hashimoto T, 2004. Identification of the volcanic quartz origins from dune sand using a single-grain RTL measurement. Quaternary Science Reviews 23: 1183-1186.10.1016/j.quascirev.2003.09.010.
 
41.
Yawata T, Takeuchi T and Hashimoto T, 2006. Dependence of luminescence sensitivities of quartz on α-β phase inversion break temperatures. Radiation Measurements 41: 841-846.10.1016/j.radmeas.2006.05.008.
 
42.
Yawata T, Hashimoto T, Takeuchi T and Hong DG, 2007. Optical conditions of X-ray irradiation for accurate equivalent dose determination. Nuclear Instruments and Methods in Physics Research B258: 375-380.10.1016/j.nimb.2007.02.086.
 
43.
Fattahi M and Stokes S, 2000b. Red thermoluminescence (RTL) in volcanic quartz: development of a high sensitivity detection system and some preliminary findings. Ancient TL 18: 35-43.
 
44.
Fattahi M and Stokes S, 2003. Dating volcanic and related sediments by luminescence methods: a review. Earth-Science Reviews 62(3-4): 229-264, DOI 10.1016/S0012-8252(02)00159-9.10.1016/S0012-8252(02)00159-9.
 
45.
Fattahi M and Stokes S, 2005. Dating unheated quartz using a single-aliquot regenerative-dose red thermoluminescence protocol. Journal of Luminescence 115(1-2): 19-31, DOI 10.1016/j.jlumin.2005.01.012.10.1016/j.jlumin.2005.01.012.
 
46.
Ganzawa Y, Watanabe Y, Osanai F and Hashimoto T, 1997. TL colour images from quartzes of loess and tephra in China and Japan. Radiation Measurements 27(2): 383-388, DOI 10.1016/S1350-4487(96)00129-1.10.1016/S1350-4487(96)00129-1.
 
47.
Miallier D, Sanzelle S, Falgueres C, Fain J, Montret M, Pilleyre T, Soumana S, Laurent M, Camus G and De Goer de Herve A, 1994c. Intercomparison of red TL and ESR signals from heated quartz grains. Radiation Measurements 23(1): 143-153, DOI 10.1016/1350-4487(94)90031-0.10.1016/1350-4487(94)90031-0.
 
48.
Miallier D, Sanzelle S, Pilleyre T and Bassinet C, 2006. Residual thermo- luminescence for sun-bleached quartz: Dependence on pre-exposure radiation dose. Quaternary Geochronology 1(4): 313-319, DOI 10.1016/j.quageo.2007.01.003.10.1016/j.quageo.2007.01.003.
 
49.
Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32(1): 57-73, DOI 10.1016/S1350-4487(99)00253-X.10.1016/S1350-4487(99)00253-X.
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top