RESEARCH PAPER
Argon Stable Isotope Concentrations in Lunar Regolith
 
More details
Hide details
1
Mass Spectrometry Laboratory, Institute of Physics, Maria Curie-Skłodowska University, Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland
 
2
Institut für Anorganische Chemie und Analytische Chemie, Duesbergweg 10-14, D-55099 Mainz, Germany
 
 
Online publication date: 2009-06-16
 
 
Publication date: 2009-01-01
 
 
Geochronometria 2009;33:37-39
 
KEYWORDS
ABSTRACT
We performed stepwise heating experiments for determination of the two stable isotope ratios of argon fractions and total concentrations of the three stable isotopes 36Ar, 38Ar and 40Ar in lunar regolith acquired from the Apollo 11, Apollo 12 and Apollo16 missions. Also the concentration of in situ formed radiogenic 40Ar was estimated on the basis of known ages and potassium concentrations determined by isotope dilution method. The observed excess of 40Ar concentration is interpreted to be due to variable (over geological time) flux of solar energetic particles which were implanted into the material at the Moon surface.
 
REFERENCES (11)
1.
Allen C and Todd NS, 2007. Astromaterials curation - Rocks and soils from the Moon. http://curator.jsc.nasa.gov/lu....
 
2.
Berra F, Swindle TD, Korotev RL, Jolliff BL, Zeigler RA and Olson E, 2006. 40Ar/39Ar dating of Apollo 12 regolith: Implication for age of Copernicus and the source of nonmare materials. Geochimica et Cosmochimica Acta 70(24): 6016-6031, DOI 10.1016/j.gca.2006.09.013.10.1016/j.gca.2006.09.013.
 
3.
Dalrymple GB, 1994. The age of the Earth. Stanford University Press, Stanford, California.
 
4.
Halas S, 2001. Elemental analysis by isotope dilution technique on example of potassium determination in minerals dated by K/Ar method (in Polish). Elektronika 42: 53-55.
 
5.
Halas S, 2007. Low-blank crucible for argon extraction from minerals at temperatures up to 1550°C. Geochronometria 27:1-3, DOI 10.2478/v10003-007-0014-1.10.2478/v10003-007-0014-1.
 
6.
Levine J, Renne PR and Muller RA, 2007. Solar and cosmogenic argon in dated lunar impact spherules. Geochimica et Cosmochimica Acta 71(6): 1624-1635, DOI 10.1016/j.gca.2006.11.034.10.1016/j.gca.2006.11.034.
 
7.
Norman MD, Duncan RA and Huard JJ, 2006. Identifying impact events within the lunar cataclysm from 40Ar-39Ar ages and compositions of Apollo 16 impact melt rocks. Geochimica et Cosmochimica Acta 70(24): 6032-6049, DOI 10.1016/j.gca.2006.05.021.10.1016/j.gca.2006.05.021.
 
8.
Ozima M and Podosek FA, 2002. Noble gas geochemistry, Second Edition. Cambridge University Press: 286 pp.10.1017/CBO9780511545986.
 
9.
Ozima M, Wieler R, Marty B and Podosek FA, 1998. Comparative studies of solar, Q-gases and terrestrial noble gases, and implication on the evolution of solar nebula. Geochimica et Cosmochimica Acta 62(2) 301-31410.1016/S0016-7037(97)00339-6.
 
10.
Suess HE, 1949. Die Häufigkeit der Edelgase auf der Erde und im Kosmos. Journal of Geology 57: 600-607.10.1086/625673.
 
11.
Takahashi K, Boyd RN, Mathews GJ and Yokoi K, 1987. Bound-state beta decay of highly ionized atoms. Physical Review C: Nuclear Physics 36: 1522-1528, DOI 10.1103/PhysRevC.36.1522.10.1103/PhysRevC.36.15229954244.
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top