RESEARCH PAPER
Chronostratigraphy of the Late Glacial Żabinko site (western Poland) and investigation of the dose rate variability
 
More details
Hide details
1
Institute of Physics/Division of Geochronology and Environmental Isotopes, Silesian University of Technology, Poland
 
2
Faculty of Oceanography and Geography, University of Gdańsk, Poland
 
 
Submission date: 2023-07-18
 
 
Acceptance date: 2024-06-06
 
 
Online publication date: 2024-08-14
 
 
Publication date: 2024-08-14
 
 
Corresponding author
Agnieszka Szymak   

Institute of Physics/Division of Geochronology and Environmental Isotopes, Silesian University of Technology, Poland
 
 
Geochronometria 2024;51(1)
 
KEYWORDS
TOPICS
ABSTRACT
The Żabinko exposure (western Poland) reveals the classic fluvio-aeolian succession known from studies in the European Sand Belt. Previous chronostratigraphic studies were mainly based on uncalibrated radiocarbon dates from organic sediments and thermoluminescence dating. The picture visible from these studies indicated a number of discrepancies between these methods. The new research in this exposure was based on optically stimulated luminescence (OSL) dating and calibrated radiocarbon dates. The results obtained indicate a general discrepancy between the results achieved by these two methods. While the radiocarbon dates provide some meaningful picture and allow correlation with previous studies, the results of OSL dating do not allow for a chronological model of sedimentary processes. The OSL dates show large inversions of the results and are clearly younger than the other dating results. Detailed analysis of OSL measurements shows radioactive disequilibrium and variability linked to differential stratification of sediments, significantly impacting the assessment of environmental dose rates. We believe that this atypical variability is presumably the result of postdepositional processes, such as changes in groundwater levels, chemical weathering and radionuclide migration.
ACKNOWLEDGEMENTS
The presented results were obtained with the support of the Polish National Science Centre, contract numbers: 2018/30/E/ST10/00616, 2021/41/N/ST10/00169 and with the support for young scientists in the Division of Geochronology and Environmental Isotopes, 2023: 14/020/BKM/0037.
REFERENCES (55)
1.
Aitken MJ, 1985. Thermoluminescence Dating. London, Academic Press, 359 pp.
 
2.
Autzen M, Andersen CE, Bailey M and Murray AS, 2022. Calibration quartz: An update on dose calculations for luminescence dating. Radiation Measurements 157: 106828, DOI 10.1016/j.radmeas.2022.106828.
 
3.
Bateman MD, 2008. Luminescence dating of periglacial sediments and structures. Boreas 37: 574–588, DOI 10.1111/j.1502-3885.2008.00050.x.
 
4.
Bell WT, 1979. Attenuation Factors for the Absorbed Radiation Dose in Quartz Inclusions for Thermoluminescence Dating. Ancient TL (8): 2–13.
 
5.
Benito G, Sánchez-Moya Y and Sopeña A, 2003. Sedimentology of high-stage flood deposits of the Tagus River, Central Spain. Sedimentary Geology 157: 107–132, DOI 10.1016/S0037-0738(02)00196-3.
 
6.
Bohncke S, Kasse C and Vanderberghe J, 1995. Climate induced environmental changes during the Vistulian Lateglacial at Żabinko, Poland. Questiones Geographicae, Special Issue 4: 43–64.
 
7.
Brauer A, Hajdas I, Blockley SP, Bronk Ramsey C, Christl M, Ivy-Ochs S, Moseley GE, Nowaczyk NN, Rasmussen SO, Roberts HM and Spötl C, 2014. The importance of independent chronology in integrating records of past climate change for the 60–8 ka INTIMATE time interval. Quaternary Science Reviews 106: 47–66, DOI 10.1016/j.quascirev.2014.07.006.
 
8.
Brennan BJ, 2003. Beta doses to spherical grains. Radiation Measurements 37(4–5): 299–303, DOI 10.1016/S1350-4487(03)00011-8.
 
9.
Brennan BJ, Lyons R and Phillips SW, 1991. Attenuation of alpha particle track dose for spherical grains. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 18(1–2): 249–253, DOI 10.1016/1359-0189(91)90119-3.
 
10.
Bronk Ramsey C, 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51: 337–360, DOI 10.1017/S0033822200033865.
 
11.
Burns CE, Mountney NP, Hodgson DM and Colombera L, 2017. Anatomy and dimensions of fluvial crevasse-splay deposits: examples from the Cretaceous Castlegate sandstone and Neslen formation, Utah, USA. Sedimentary Geology 351: 21–35, DOI 10.1016/j.sedgeo.2017.02.003.
 
12.
Crombé P, Bos JA, Cruz F and Verhegge J, 2020. Repeated aeolian deflation during the Allerød/GI-1a-c in the coversand lowland of NW Belgium. Catena 188: 104453, DOI 10.1016/j.catena.2020.104453.
 
13.
Cutshall NH, Larsen IL and Olsen CR, 1983. Direct analysis of 210Pb in sediment samples: Self-absorption corrections. Nuclear Instruments and Methods in Physics Research 206: 309–312, DOI 10.1016/0167-5087(83)91273-5.
 
14.
FAO, 1988. FAO/Unesco Soil Map of the World, Revised Legend, with corrections. Word Resources Report 60, FAO, Rome.
 
15.
Fitzsimmons KE, Rhodes EJ, Magee JW and Barrows TT, 2007. The timing of linear dune activity in the Strzelecki and Tirari Deserts, Australia. Quaternary Science Reviews 26: 2598–2616, DOI 10.1016/j.quascirev.2007.06.010.
 
16.
Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single and multiple grains of quartz from Jinmium Rock Shelter, Northern 12 Australia. Part I, experimental design and statistical models. Archaeometry 41: 1835–1857, DOI 10.1111/j.1475-4754.1999.tb00988.x.
 
17.
Gradziński R, Baryła J, Doktor M, Gmur D, Gradziński M, Kędzior A, Paszkowski M, Soja R, Zieliński T and Żurek S, 2003. Vegetation-controlled modern anastomosing system of the upper Narew River (NE Poland) and its sediments. Sedimentary Geology 157: 253–276, DOI 10.1016/S0037-0738(02)00236-1.
 
18.
Guérin G, Mercier N and Adamiec G, 2011. Dose-rate conversion factors: update. Ancient TL 29: 5–8.
 
19.
Hughes A, Gyllencreutz R, Lohne ØS, Mangerud J and Svendsen JI, 2016. The last Eurasian ice sheets–a chronological database and time-slice reconstruction, DATED-1. Boreas 45: 1–45, DOI 10.1111/bor.12142.
 
20.
Jankowski M, 2012. Lateglacial soil paleocatena in inland-dune area of the Toruń Basin, Northern Poland. Quaternary International 265: 116–125, DOI 10.1016/j.quaint.2012.02.006.
 
21.
Kalińska E, Weckwerth P and Alexanderson H, 2023. Recent advances in luminescence dating of the Late Quaternary sediments in the Baltic States, Northern Europe: A review. Earth-Science Reviews 236: 104272, DOI 10.1016/j.earscirev.2022.104272.
 
22.
Kasse C, 2002. Sandy aeolian deposits and their relation to climate during the Last Glacial Maximum and Lateglacial in northwest and central Europe. Progress in Physical Geography: Earth and Environment 26: 507–532, DOI 10.1191/0309133302pp350ra.
 
23.
Konecka-Betley K, 2012. Late Glacial and Holocene 14 C-dated fossil soils in the Middle Vistula Valley. Soil Science Annual 63(4): 50–60, DOI 10.2478/v10239-012-0041-0.
 
24.
Kozarski S, Gonera P and Antczak B, 1988. Valley floor development and paleohydrological changes: the Late Vistulian and Holocene history of the Warta river (Poland). [In:] Lang, G., Schluchter, C. (Eds), Lake, Mire and River Environments During the Last 15 000 Years. Balkema 185–203.
 
25.
Kozarski S and Nowaczyk B, 1995. The Bólling interstadial at Żabinko and Late Vistulian environmental changes in middle reach of the Warsaw-Berlin Pradolina. Quaternary Studies in Poland 13: 43–53.
 
26.
Łopuch M, Sokołowski RJ and Jary Z, 2023. Factors controlling the development of cold-climate dune fields within the central part of the European Sand Belt – insights from morphometry. Geomorphology 420: 108514. DOI 10.1016/j.geomorph.2022.108514.
 
27.
Manikowska B, 2002. Fossil paleosols and pedogenetic periods in the evolution of Central Poland environment after the Wartian Glaciation. In: Manikowska, B. Konecka-Betley, K., Bednarek, R., (Eds.), Paleopedology problems in Poland. ŁTN, Łódź, 165–212.
 
28.
Mason JA, Jacobs PM, Greene RSB and Nettleton WD, 2003. Sedimentary aggregates in the Peoria Loess of Nebraska, USA. Catena 53: 377–397, DOI 10.1016/S0341-8162(03)00073-0.
 
29.
Miall AD, 1996. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Ptreoleum Geology. Springer-Verlag, New York, pp. 1–582.
 
30.
Moska P, 2019. Luminescence dating of Quaternary sediments – some practical aspects. Studia Quaternaria 36: 2161–2169, DOI 10.24425/sq.2019.126387.
 
31.
Moska P, Bluszcz A, Poręba G, Tudyka K, Adamiec G, Szymak A and Przybyła A, 2021. Luminescence dating procedures at the Gliwice Luminescence Dating Laboratory. Geochronometria 48: 1–15, DOI 10.2478/geochr-2021-0001.
 
32.
Moska P, Sokołowski RJ, Jary Z, Zieliński P, Raczyk J, Szymak A, Krawczyk M, Skurzyński J, Poręba G, Łopuch M and Tudyka K, 2022. Stratigraphy of the Late Glacial and Holocene aeolian series in different sedimentary zones related to the Last Glacial maximum in Poland. Quaternary International 630: 65–83, DOI 10.1016/j.quaint.2021.04.004.
 
33.
Moska P, Sokołowski RJ, Zieliński P, Jary Z, Raczyk J, Mroczek P, Szymak A, Krawczyk M, Skurzyński J, Poręba G, Łopuch M and Tudyka K, 2023. An Impact of Short-Term Climate Oscillations in the Late Pleniglacial and Lateglacial Interstadial on Sedimentary Processes and the Pedogenic Record in Central Poland, Annals of the American Association of Geographers 113: 46–70, DOI 10.1080/24694452.2022.2094325.
 
34.
Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single aliquot regenerative-dose protocol. Radiation Measurements 32: 57–73, DOI 10.1016/S1350-4487(99)00253-X.
 
35.
Nowaczyk B, 1986. Wiek wydm, ich cechy granulometryczne i strukturalne a schemat cyrkulacji atmosferycznej w Polsce w późnym vistulianie i holocenie (The age of dunes, their textural and structural properties against atmospheric circulation pattern of Poland during the Late Vistulian and Holocene). Seria Geografia 28. Poznań, Wyd. Naukowe UAM: 245pp (in Polish).
 
36.
Pincé P, Vandenberghe D, Moayed NK, De Dapper M, Debeer AE, Van Maldegem E, Verhegge J, Piret L, De Grave J and Crombé P, 2022. High-resolution OSL chronology of a well-preserved inland dune in the Lys valley (Sint-Martens-Latem, NW Belgium). Quaternary Geochronology 72: 101322, DOI 10.1016/j.quageo.2022.101322.
 
37.
Poręba G, Tudyka K, Szymak A, Pluta J, Rocznik J, Świątkowski J, Osadnik R and Moska P, 2022. Evaluating the effect of hydrofluoric acid etching on quartz grains using microscope image analysis, laser diffraction and weight loss particle size estimate. Geochronometria 49: 1–8, DOI 10.2478/geochr-2022-0001.
 
38.
Poręba G, Tudyka K, Walencik-Łata A and Kolarczyk A, 2020. Bias in 238U decay chain members measured by γ-ray spectrometry due to 222Rn leakage. Applied Radiation and Isotopes 156: 108945, DOI 10.1016/j.apradiso.2019.108945.
 
39.
Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating, large depths and long-term variations. Radiation Measurements 23: 497–500, DOI 10.1016/1350-4487(94)90086-8.
 
40.
Rasmussen SO, Bigler M, Blockley SP, Blunier T, Buchardt SL, Clausen HB, Cvijanovic I, Dahl-Jensen D, Johnsen SJ, Fischer H, Gkinis V, Guillevic M, Hoek WZ, Lowe JJ, Pedro JB, Popp T, Seierstad IK, Steffensen JP, Svensson AM, Vallelonga P, Vinther BM, Walker MJC, Wheatley JJ, Winstrup M, 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106: 14–28, DOI 10.1016/j.quascirev.2014.09.007.
 
41.
Reimer P, Austin W, Bard E, Bayliss A, Blackwell P, Bronk Ramsey C, Butzin M, Cheng H, Edwards R, Friedrich M, Grootes P, Guilderson T, Hajdas I, Heaton T, Hogg A, Hughen K, Kromer B, Manning S, Muscheler R, Palmer J, Pearson C, van der Plicht J, Reimer R, Richards D, Scott E, Southon J, Turney C, Wacker L, Adolphi F, Büntgen U, Capano M, Fahrni S, Fogtmann-Schulz A, Friedrich R, Köhler P, Kudsk S, Miyake F, Olsen J, Reinig F, Sakamoto M, Sookdeo A and Talamo S, 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62: 725–757, DOI 10.1017/RDC.2020.41.
 
42.
Sanderson DCW, 1988. Thick source beta counting (TSBC): A rapid method for measuring beta dose-rates. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 14(1–2): 203–207, DOI 10.1016/1359-0189(88)90065-9.
 
43.
Schwan J, 1986. The origin of horizontal alternating bedding in Weichselian Aeolian sands in northwestern Europe. Sedimentary Geology 49: 73–108, DOI 10.1016/0037-0738(86)90016-3.
 
44.
Sokołowski RJ, Moska P, Zieliński P, Jary Z, Piotrowska N, Raczyk J, Mroczek P, Szymak, A, Krawczyk M, Skurzyński J, Poręba G, Łopuch M and Tudyka K, 2022. Reinterpretation of fluvio-aeolian succession from Late Glacial classic type localities using new high-resolution radiocarbon dating results from the Polish part of the European Sand Belt. Radiocarbon 64: 1387–1402, DOI 10.1017/RDC.2022.37.
 
45.
Strong KP and Levins DM, 1982. Effect of Moisture Content on Radon Emanation from Uranium Ore and Tailings. Health Physics 42(1): 27–32, DOI 10.1097/00004032-198201000-00003.
 
46.
Szymak A, Moska P, Poręba G, Tudyka K and Adamiec G, 2022. The internal dose rate in quartz grains: experimental data and consequences for luminescence dating. Geochronometria 49: 9–17, DOI 10.2478/geochr-2022-0002.
 
47.
Tudyka K, Miłosz S, Adamiec G, Bluszcz A, Poręba G, Paszkowski Ł and Kolarczyk A, 2018. μDose: A compact system for environmental radioactivity and dose rate measurement. Radiation Measurements 118: 8–13, DOI 10.1016/j.radmeas.2018.07.016.
 
48.
Tudyka K, Koruszowic M, Osadnik R, Adamiec G, Moska P, Szymak A, Bluszcz A, Zhang J, Kolb T and Poręba G, 2022. μRate: An online dose rate calculator for trapped charge dating. Archaeometry 65: 423–443, DOI 10.1111/arcm.12828.
 
49.
Zeeberg J, 1998. The European sand belt in eastern Europe — and comparison of Late Glacial dune orientation with GCM simulation results. Boreas 27(2): 127–139, DOI 10.1111/j.1502-3885.1998.tb00873.x.
 
50.
Zieliński P, 2016. Regionalne i lokalne uwarunkowania późnovistuliańskiej depozycji eolicznej w środkowej części europejskiego pasa piaszczystego [Regional and local conditions of the Late Vistulian aeolian deposition in the central part of the European Sand Belt]. Wydawnictwo UMCS. Lublin 1–235 [in Polish with English summary].
 
51.
Zieliński P, Sokołowski RJ, Fedorowicz S and Jankowski M, 2011. Stratigraphic position of fluvial and aeolian deposits in the Żabinko site based on TL dating. Geochronometria 38: 64–71, DOI 10.2478/s13386-011-0005-x.
 
52.
Zieliński P, Sokołowski RJ, Woronko B, Jankowski M, Fedorowicz S, Zaleski I, Molodkov A and Weckwerth P, 2015. The depositional conditions of the fluvio-aeolian succession during the last climate minimum based on the examples from Poland and NW Ukraine. Quaternary International 386: 30–41, DOI 10.1016/j.quaint.2014.08.013.
 
53.
Zieliński P, Sokołowski RJ, Jankowski M, Standzikowski K and Fedorowicz S, 2019. The climatic control of sedimentary environment changes during the Weichselian–An example from the Middle Vistula Region (eastern Poland). Quaternary International 501: 120–134, DOI 10.1016/j.quaint.2018.04.036.
 
54.
Zieliński T, 1998. Litofacjalna identyfikacja osadów rzecznych [Lithofacial identification of alluvial sediments]. In: Mycielska-Dowgiałło, E. (Ed.), Struktury Sedymentacyjne i Postsedymentacyjne W Osadach Czwartorzędowych [Sedimentary and Postsedimentary Structures in Quaternary Sediments and Their Value for Interpretation]. University of Warsaw Press, pp. 195–260 [in Polish with English summary].
 
55.
Zieliński T, 2014. Sedymentologia. Osady rzek i jezior [Sedimentology. Deposits of rivers and lakes]. Wydawnictwo Naukowe UAM. Poznań 1–594 [in Polish].
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top