RESEARCH PAPER
Deposition Rate of Lake Sediments Under Different Alternative Stable States
 
More details
Hide details
1
Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
 
 
Online publication date: 2009-01-30
 
 
Publication date: 2008-01-01
 
 
Geochronometria 2008;32:29-35
 
KEYWORDS
ABSTRACT
Sediments of five shallow lakes in Polesie Lubelskie region (Eastern Poland), representing a wide range of nutrient concentration, were dated by Pb-210 method and reliable age-depth models were constructed. These models were a base for studies of relationship between status of lake biocenoses and rate of sedimentation in the lakes. The sedimentation rate does not depend on ecological status of studied lakes. The highest mean sedimentation rate was found in phytoplankton-dominated (Lake Syczyńskie) and phytoplankton-macrophyte-dominated (Lake Sumin) lakes. Macrophyte-dominated lakes represented intermediate values of deposition rate. Lake depth, area and hydrology are more important factors controlling sedimentation rate. The sedimentation rate was rather stable or changed over the time, depending on human management in the lakes' drainage basins.
REFERENCES (19)
1.
Appleby PG, 2001. Chronostratigraphic techniques in recent sediments. In: Last WM and Smol JP, eds, Tracking Environmental Changes Using Lake Sediments. Vol. 1: Basin Analysis, Coring, and Chronological Techniques. Dordrecht, Kluwer Academic Publishers: 171-203.10.1007/0-306-47669-X_9.
 
2.
Chmielewski TJ, 2003. Changes of land-use boundaries over forty years (1952-92): The case of 11 catchment basins of lakes in the Polesie Lubelskie region (Eastern Poland). Polish Journal of Ecology 51: 117-128.
 
3.
Chmielewski TJ, Radwan S and Sielewicz B, 1997. Changes in ecological relationships in a group of eight shallow lakes in the Polesie Lubelskie region (eastern Poland) over forty years. Hydrobiologia 342(0): 285-295, DOI 10.1023/A:1017064128937.10.1007/978-94-011-5648-6_29.
 
4.
Cleveland WS and Devlin SJ, 1988. Locally-Weighted Regression: An approach to regression analysis by local fitting. Journal of the American Statistical Association 83: 596-610.10.1080/01621459.1988.10478639.
 
5.
Flynn WW, 1968. The determination of low-levels of polonium-210 in environmental materials. Analytica Chemica Acta 43: 221-227, DOI 10.1016/S0003-2670(00)89210-7.10.1016/S0003-2670(00)89210-7.
 
6.
Gaca P, Tomankiewicz E, Mietelski JW, Grabowska S, Kubica B, 2006. Radionuclides in two rised peat profiles collected from Kościeliska Valley in the Tatra Mountains. Journal of Radioanalytical and Nuclear Chemistry 267(2): 443-448, DOI 10.1007/s10967-006-0068-y.10.1007/s10967-006-0068-y.
 
7.
Gąsiorowski M and Hercman H, 2005a. Recent changes of sedimentation rates in three Vistula oxbow lakes determined by 210Pb dating. Geochronometria 24: 33-39.
 
8.
Gąsiorowski M and Hercman H, 2005b. Recent sedimentation and eutrophication of Kruklin Lake after artificial drop in water-level in the middle of 19th century. Studia Quaternaria 22: 17-25.
 
9.
Kornijów R and Halkiewicz A, 2007. Uwarunkowania zaburzeń sekwencji odkładania osadów dennych w płytkich jeziorach poleskich w kontekście ich przydatności do badań paleoekologicznych. Studia Limnologica et Telmatologica 1: 83-86 (in Polish).
 
10.
Kornijów R and Pęczuła W 2005. Ecosystem of a small and shallow lake suffering from cyanobacterial blooms - hypereutrophic, phytoplankton-dominated or both? Verhandlungen des Internationalen Verein Limnologie 29: 1015-1019.10.1080/03680770.2005.11902837.
 
11.
Kornijów R, Pęczuła W, Lorens B, Ligęza S, Rechulicz J and Kowalczyk-Pecka D, 2002a. Shallow Polesie lakes from the view point of the alternative stable states theory. Acta Agrophysica 68: 61-72.
 
12.
Kornijów R, Smal H, Pęczuła W, Lorens B, Rechulicz J, Sugier P, Paleolog-Demetraki A, Ligęza S, Tarkowska-Kukuryk M, Kowalczyk D, Szafran K and Halkiewicz A, 2002b. Hypertrophication of Lake Syczyńskie (Eastern Poland). Limnological Review 2: 209-215.
 
13.
Moss B, 1995. The microwaterscape - a four-dimensional view of interaction among water chemistry, phytoplankton, periphyton, macrophytes, animals and ourselves. Water Sciences and Technology 32(4): 105-116, DOI 10.1016/0273-1223(95)00687-7.10.2166/wst.1995.0172.
 
14.
Noges P, Tuvikene L, Noges T and Kisand A, 1999. Primary production, sedimentation and resuspension in large shallow Lake Vortsjarv. Aquatic Sciences 61(2): 168-182, DOI 10.1007/PL00001323.10.1007/PL00001323.
 
15.
Ott I, Rakko A, Sarik D, Noges P and Ott K, 2005. Sedimentation rate of seston during the formation of temperature stratification after ice break-up in the partly meromictic Lake Verevi. Hydrobiologia 547(1): 51-61, DOI 10.1007/s10750-005-4143-0.10.1007/s10750-005-4143-0.
 
16.
Scheffer M, Hosper SH, Meijer ML, Moss B and Jeppesen E, 1993. Alternative equilibriums in shallow lakes. Trends in Ecology and Evolution 8(8): 275-279, DOI 10.1016/0169-5347(93)90254-M.10.1016/0169-5347(93)90254-M.
 
17.
Smal H, Kornijów R and Ligęza S, 2005. The effect of catchment on water quality and eutrophication risk of five shallow lakes (Polesie region, Eastern Poland). Polish Journal of Ecology 53: 313-327.
 
18.
Tylmann W, 2004. Estimating recent sedimentation rates using 210Pb on the example morphologically complex lake (Upper Lake Raduńskie, Poland). Geochronometria 23: 21-26.
 
19.
Virkanen J, Korhola A, Tikkanen M, Blom T, 1997. Recent environmental changes in a naturally acidic rocky lake in southern Finland, as reflected in its sediment geochemistry and biostratigraphy. Journal of Paleolimnology 17(2): 191-213, DOI 10.1023/A:1007919922330.10.1023/A:1007919922330.
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top