RESEARCH PAPER
Dose rate measurements with correlated U, Th and K uncertainties using full NaI:Tl gamma spectrum analysis
 
More details
Hide details
1
Institute of Physics – Centre for Science and Education, Silesian University of Technology, Poland
 
 
Submission date: 2024-06-10
 
 
Acceptance date: 2025-02-04
 
 
Online publication date: 2025-02-14
 
 
Publication date: 2025-02-14
 
 
Corresponding author
Maciej Gosek   

Institute of Physics – Centre for Science and Education, Silesian University of Technology, S. Konarskiego 22B, 44-100, Gliwice, Poland
 
 
Geochronometria 2025;52(1)
 
KEYWORDS
TOPICS
ABSTRACT
This study introduces a new method for measuring uranium, thorium decay chains, and K-40 in geological materials using NaI:Tl gamma spectrometry. The novel approach involves fitting data to model reference spectra via custom software, processing full mixed spectra to estimate pure component spectra quantifying radionuclides contents and evaluating their correlations. These correlations are crucial in calculating environmental dose rates for trapped charge dating. The methodology was validated using a Canberra InSpector 1000 spectrometer, with results cross-checked against high-resolution gamma spectrometry. With the use of the μRate web application, dose rates uncertainties were lowered by including correlated inputs, which results in improved precision in trapped charge dating.
ACKNOWLEDGEMENTS
MG is pleased to acknowledge the Silesian Univer-sity of Technology’s funding of scientific associations as part of the “Excellence Initiative-Research Univer-sity” program. We are thankful to Grzegorz Adamiec for his critical language corrections, contributing sig-nificantly to this manuscript.
REFERENCES (53)
1.
Adamiec G, 2005a. OSL decay curves—relationship between single- and multiple-grain aliquots. Radiation Measurements 39(1): 63–75, DOI 10.1016/j.radmeas.2004.03.007.
 
2.
Adamiec G, 2005b. Properties of the 360 and TL emissions of the ‘110°C peak’ in fired quartz. Radiation Measurements 39(1): 105–110, DOI 10.1016/j.radmeas.2004.03.006.
 
3.
Aitken MJ, 1985a. Alpha particle effectiveness: numerical relationship between systems. Ancient TL 3(3): 22–25, DOI 10.26034/la.atl.1985.095.
 
4.
Aitken MJ, 1985b. Thermoluminescence Dating. Academic Press: London.
 
5.
Aitken MJ and Xie J, 1990. Moisture correction for annual gamma dose. Ancient TL 8(2): 6–9, DOI 10.26034/la.atl.1990.157.
 
6.
Arnold LJ, Duval M, Falguères C, Bahain J-J and Demuro M, 2012. Portable gamma spectrometry with cerium-doped lanthanum bromide scintillators: Suitability assessments for luminescence and electron spin resonance dating applications. Radiation Measurements 47(1): 6–18, DOI 10.1016/j.radmeas.2011.09.001.
 
7.
Bejarano-Arias I, Van Wees RMJ, Alexanderson H, Janočko J and Perić ZM, 2023. Testing the Applicability of Quartz and Feldspar for Luminescence Dating of Pleistocene Alluvial Sediments in the Tatra Mountain Foothills, Slovakia. Geochronometria 50(1): 50–80, DOI 10.2478/geochr-2023-0002.
 
8.
Bluszcz A and Adamiec G, 2006. Application of differential evolution to fitting OSL decay curves. Radiation Measurements 41(7–8): 886–891, DOI 10.1016/j.radmeas.2006.05.016.
 
9.
Bonczyk M, 2018. Determination of 210 Pb concentration in NORM waste – An application of the transmission method for self-attenuation corrections for gamma-ray spectrometry. Radiation Physics and Chemistry 148: 1–4, DOI 10.1016/j.radphyschem.2018.02.011.
 
10.
Bonczyk M, Chałupnik S, Wysocka M, Grygier A, Hildebrandt R and Tosheva Z, 2022. The Determination of Radon/Thoron Exhalation Rate in an Underground Coal Mine—Preliminary Results. International Journal of Environmental Research and Public Health 19(10): 6038, DOI 10.3390/ijerph19106038.
 
11.
Branch MA, Coleman TF and Li Y, 1999. A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems. SIAM Journal on Scientific Computing 21(1): 1–23, DOI 10.1137/S1064827595289108.
 
12.
Brennan BJ, Lyons RG and Phillips SW, 1991. Attenuation of alpha particle track dose for spherical grains. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 18(1–2): 249–253, DOI 10.1016/1359-0189(91)90119-3.
 
13.
Brill D, Ageby L, Obert C, Hollerbach R, Duval M, Kolb T and Bartz M, 2022. Investigating the resetting of IRSL signals in beach cobbles and their potential for rock surface dating of marine terraces in Northern Chile. Marine Geology 443: 106692, DOI 10.1016/j.margeo.2021.106692.
 
14.
Bu M, Murray AS, Kook M, Buylaert J-P and Thomsen KJ, 2021. The Application of Full Spectrum Analysis to NaI(Tl) Gamma Spectrometry for the Determination of Burial Dose Rates. Geochronometria 48(1): 161–170, DOI 10.2478/geochr-2020-0009.
 
15.
Bu M, Murray AS, Kook M, Helsted LM, Buylaert J-P and Thomsen KJ, 2018. Characterisation of scintillator-based gamma spectrometers for determination of sample dose rate in OSL dating applications. Radiation Measurements 120: 253–259, DOI 10.1016/j.radmeas.2018.07.003.
 
16.
Condori A, 2020. CNFreader, accessed 2023-12-01. https://github.com/Squawk322/C....
 
17.
Cresswell AJ, Carter J and Sanderson DCW, 2018. Dose rate conversion parameters: Assessment of nuclear data. Radiation Measurements 120: 195–201, DOI 10.1016/j.radmeas.2018.02.007.
 
18.
Degering D and Degering A, 2020. Change is the only constant - time-dependent dose rates in luminescence dating. Quaternary Geochronology 58: 101074, DOI 10.1016/j.quageo.2020.101074.
 
19.
Duval M and Arnold LJ, 2013. Field gamma dose-rate assessment in natural sedimentary contexts using LaBr3(Ce) and NaI(Tl) probes: A comparison between the “threshold” and “windows” techniques. Applied Radiation and Isotopes 74: 36–45, DOI 10.1016/j.apradiso.2012.12.006.
 
20.
Ginter A, Moska P, Poręba G, Tudyka K, Szymak A and Szczurek G, 2022. Dates of Artifacts from Lusatian Urnfield Cemetery at Brzezie, Greater Poland. Radiocarbon 64(6): 1471–1482, DOI 10.1017/RDC.2022.70.
 
21.
Guérin G, Mercier N, Nathan R, Adamiec G and Lefrais Y, 2012. On the use of the infinite matrix assumption and associated concepts: A critical review. Radiation Measurements 47(9): 778–785, DOI 10.1016/j.radmeas.2012.04.004.
 
22.
Harris CR, Millman KJ, Van Der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, Van Kerkwijk MH, Brett M, Haldane A, Del Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C and Oliphant TE, 2020. Array programming with NumPy. Nature 585(7825): 357–362, DOI 10.1038/s41586-020-2649-2.
 
23.
Hendriks PHGM, Limburg J and De Meijer RJ, 2001. Full-spectrum analysis of natural γ-ray spectra. Journal of Environmental Radioactivity 53(3): 365–380, DOI 10.1016/S0265-931X(00)00142-9.
 
24.
Jacques J, Lavergne C and Devictor N, 2006. Sensitivity analysis in presence of model uncertainty and correlated inputs. Reliability Engineering & System Safety 91(10): 1126–1134, DOI 10.1016/j.ress.2005.11.047.
 
25.
Kumar R, Frouin M, Gazack J and Schwenninger J-L, 2022. OxGamma: A MATLAB based application for the analysis of gamma-ray spectra. Radiation Measurements 154: 106761, DOI 10.1016/j.radmeas.2022.106761.
 
26.
Lai ZP, Zöller L, Fuchs M and Brückner H, 2008. Alpha efficiency determination for OSL of quartz extracted from Chinese loess. Radiation Measurements 43(2–6): 767–770, DOI 10.1016/j.radmeas.2008.01.022.
 
27.
Markkanen M and Arvela H, 1992. Radon Emanation from Soils. Radiation Protection Dosimetry 45(1–4): 269–272, DOI 10.1093/rpd/45.1-4.269.
 
28.
Mauz B, Nolan PJ and Appleby PG, 2022. Technical note: Quantifying uranium-series disequilibrium in natural samples for dosimetric dating – Part 1: gamma spectrometry. Geochronology 4(1): 213–225, DOI 10.5194/gchron-4-213-2022.
 
29.
Méndez-Quintas E, Demuro M, Arnold LJ, Duval M, Pérez-González A and Santonja M, 2019. Insights into the late stages of the Acheulean technocomplex of Western Iberia from the Arbo site (Galicia, Spain). Journal of Archaeological Science: Reports 27: 101934, DOI 10.1016/j.jasrep.2019.101934.
 
30.
Mercier N and Falguères C, 2007. Field gamma dose-rate measurement with a NaI(Tl) detector: re-evaluation of the “threshold” technique. Ancient TL 25: 1–4, DOI 10.26034/la.atl.2007.400.
 
31.
Michalik B, Wysocka M, Bonczyk M, Samolej K and Chmielewska I, 2020. Long term behaviour of radium rich deposits in a lake ecosystem. Journal of Environmental Radioactivity 222: 106349, DOI 10.1016/j.jenvrad.2020.106349.
 
32.
Moska P, Bluszcz A, Poręba G, Tudyka K, Adamiec G, Szymak A and Przybyła A, 2021. Luminescence Dating Procedures at the Gliwice Luminescence Dating Laboratory. Geochronometria 48(1): 1–15, DOI 10.2478/geochr-2021-0001.
 
33.
Moska P, Jary Z, Adamiec G and Bluszcz A, 2019. Chronostratigraphy of a loess-palaeosol sequence in Biały Kościół, Poland using OSL and radiocarbon dating. Quaternary International 502: 4–17, DOI 10.1016/j.quaint.2018.05.024.
 
34.
Murray A, Buylaert J-P and Thiel C, 2015. A luminescence dating intercomparison based on a Danish beach-ridge sand. Radiation Measurements 81: 32–38, DOI 10.1016/j.radmeas.2015.02.012.
 
35.
Murray AS, Helsted LM, Autzen M, Jain M and Buylaert JP, 2018. Measurement of natural radioactivity: Calibration and performance of a high-resolution gamma spectrometry facility. Radiation Measurements 120: 215–220, DOI 10.1016/j.radmeas.2018.04.006.
 
36.
Panin A, Adamiec G, Buylaert J-P, Matlakhova E, Moska P and Novenko E, 2017. Two Late Pleistocene climate-driven incision/aggradation rhythms in the middle Dnieper River basin, west-central Russian Plain. Quaternary Science Reviews 166: 266–288, DOI 10.1016/j.quascirev.2016.12.002.
 
37.
Pawełczyk F, Bolik A, Błachut B, Kamińska A, Opała-Owczarek M, Malik I, Wojcik M, Zakrzewska Z, Pawlak Z and Poręba G, 2023. Development of Chronology for Historical Mining Shaft Remains in the Vicinity of Tarnowskie Góry Based on Radiocarbon, Luminescence and Dendrochronological Dating. Geochronometria 50(1): 81–90, DOI 10.2478/geochr-2023-0004.
 
38.
Perić ZM, Stevens T, Obreht I, Hambach U, Lehmkuhl F and Marković SB, 2022. Detailed luminescence dating of dust mass accumulation rates over the last two glacial-interglacial cycles from the Irig loess-palaeosol sequence, Carpathian Basin. Global and Planetary Change 215: 103895, DOI 10.1016/j.gloplacha.2022.103895.
 
39.
Poręba G, Tudyka K, Walencik-Łata A and Kolarczyk A, 2020. Bias in 238U decay chain members measured by γ-ray spectrometry due to 222Rn leakage. Applied Radiation and Isotopes 156: 108945, DOI 10.1016/j.apradiso.2019.108945.
 
40.
Rhodes EJ and Schwenninger J-L, 2007. Dose rates and radioisotope concentrations in the concrete calibration blocks at Oxford. An-cient TL 25: 5–8, DOI 10.26034/la.atl.2007.401.
 
41.
Rocznik J, Pluta J, Tudyka K, Poręba G and Szymak A, 2023. A new fast screening method for estimating building materials hazard indices with correlated inputs. Journal of Radioanalytical and Nuclear Chemistry 332(12): 4889– 4896, DOI 10.1007/s10967-023-09197-5.
 
42.
Sakoda A, Ishimori Y and Yamaoka K, 2011. A comprehensive review of radon emanation measurements for mineral, rock, soil, mill tailing and fly ash. Applied Radiation and Isotopes 69(10): 1422–1435, DOI 10.1016/j.apradiso.2011.06.009.
 
43.
Sakoda A, Nishiyama Y, Hanamoto K, Ishimori Y, Yamamoto Y, Kataoka T, Kawabe A and Yamaoka K, 2010. Differences of natural radioactivity and radon emanation fraction among constituent minerals of rock or soil. Applied Radiation and Isotopes 68(6): 1180–1184, DOI 10.1016/j.apradiso.2009.12.036.
 
44.
Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M and Tarantola S, 2010. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications 181(2): 259–270, DOI 10.1016/j.cpc.2009.09.018.
 
45.
Seo BK, Lee KY, Yoon YY and Lee DW, 2001. Direct and precise determination of environmental radionuclides in solid materials using a modified Marinelli beaker and a HPGe detector. Fresenius’ Journal of Analytical Chemistry 370(2–3): 264–269, DOI 10.1007/s002160000695.
 
46.
Sobol IM, 2001. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation 55(1): 271–280, DOI 10.1016/S0378-4754(00)00270-6.
 
47.
Sontag-González M, Li B, O’Gorman K, Sutikna T, Jatmiko, Jacobs Z and Roberts RG, 2021. Establishing a pIRIR procedure for De determination of composite mineral grains from volcanic terranes: A case study of sediments from Liang Bua, Indonesia. Quaternary Geochronology 65: 101181, DOI 10.1016/j.quageo.2021.101181.
 
48.
Tudyka K, Bluszcz A, Poręba G, Miłosz S, Adamiec G, Kolarczyk A, Kolb T, Lomax J and Fuchs M, 2020. Increased dose rate precision in combined α and β counting in the μDose system - a probabilistic approach to data analysis. Radiation Measurements 134: 106310, DOI 10.1016/j.radmeas.2020.106310.
 
49.
Tudyka K, Koruszowic M, Osadnik R, Adamiec G, Moska P, Szymak A, Bluszcz A, Zhang J, Kolb T and Poręba G, 2023. μRate: An online dose rate calculator for trapped charge dating. Archaeometry 65(2): 423–443, DOI 10.1111/arcm.12828.
 
50.
Tudyka K, Poręba G, Szymak A, Rocznik J, Pluta J, Schüler T, Kolb T and Murray A, 2021. Systematic error in 238U decay chain radionuclides measurements due to 222Rn emanation from reference materials. Measurement 184: 109893, DOI 10.1016/j.measurement.2021.109893.
 
51.
Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, Van Der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, Van Mulbregt P, SciPy 1.0 Contributors, Vijaykumar A, Bardelli AP, Rothberg A, Hilboll A, Kloeckner A, Scopatz A, Lee A, Rokem A, Woods CN, Fulton C, Masson C, Häggström C, Fitzgerald C, Nicholson DA, Hagen DR, Pasechnik DV, Olivetti E, Martin E, Wieser E, Silva F, Lenders F, Wilhelm F, Young G, Price GA, Ingold G-L, Allen GE, Lee GR, Audren H, Probst I, Dietrich JP, Silterra J, Webber JT, Slavič J, Nothman J, Buchner J, Kulick J, Schönberger JL, De Miranda Cardoso JV, Reimer J, Harrington J, Rodríguez JLC, Nunez-Iglesias J, Kuczynski J, Tritz K, Thoma M, Newville M, Kümmerer M, Bolingbroke M, Tartre M, Pak M, Smith NJ, Nowaczyk N, Shebanov N, Pavlyk O, Brodtkorb PA, Lee P, McGibbon RT, Feldbauer R, Lewis S, Tygier S, Sievert S, Vigna S, Peterson S, More S, Pudlik T, Oshima T, Pingel TJ, Robitaille TP, Spura T, Jones TR, Cera T, Leslie T, Zito T, Krauss T, Upadhyay U, Halchenko YO and Vázquez-Baeza Y, 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods 17(3): 261–272, DOI 10.1038/s41592-019-0686-2.
 
52.
Vugrin KW, Swiler LP, Roberts RM, Stucky‐Mack NJ and Sullivan SP, 2007. Confidence region estimation techniques for nonlinear regression in groundwater flow: Three case studies. Water Resources Research 43(3): 2005WR004804, DOI 10.1029/2005WR004804.
 
53.
Wallbrink PJ, Walling DE and He Q, 2003. Radionuclide Measurement Using HPGe Gamma Spectrometry. In: Zapata F (ed) Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides. Kluwer Academic Publishers: Dordrecht, 67–96, DOI 10.1007/0-306-48054-9_5.
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top