RESEARCH PAPER
Field gamma spectrometry, Monte Carlo simulations and potential of non-invasive measurements
 
More details
Hide details
1
Institut de Recherche sur les Archéomatériaux, UMR 5060 CNRS — Université de Bordeaux, Centre de Recherche en Physique Appliquée à l’Archéologie (CRP2A), Maison de l’archéologie, 33607, Pessac cedex, France
 
 
Online publication date: 2011-12-25
 
 
Publication date: 2012-03-01
 
 
Geochronometria 2012;39(1):40-47
 
KEYWORDS
ABSTRACT
The determination of gamma dose rates is of prior importance in the field of luminescence dating methods. In situ measurements are usually performed by the insertion of dosimeters or a portable gamma spectrometer cell in sediments. In this paper, Monte-Carlo simulations using the Geant4 toolkit allow the development of a new technique of insitu gamma dose rate evaluations: a spectrometer cell is placed on the surface of sediments under excavation to acquire successive spectra as sediments are removed by excavations. The principle of this non-invasive technique is outlined and its potential is discussed, especially in the case of environments in which radioelements are heterogeneously distributed. For such cases, a simple method to reconstruct gamma dose rate values with surface measurements using an attenuator is discussed, and an estimation of errors is given for two simple cases. This technique appears to be applicable, but still needs experimental validation.
 
REFERENCES (35)
1.
Agostinelli S, et al. (Geant4 Collaboration), 2003. Geant4 — a simulation toolkit. Nuclear Instruments and Methods A 506: 250–303, DOI 10.1016/S0168-9002(03)01368-8. http://dx.doi.org/10.1016/S016....
 
2.
Aitken MJ, 1985. Thermoluminescence dating. London, Academic Press: 359pp.
 
3.
Aitken MJ, Clark PA and Gaffney CF, 1985. Beta and gamma gradients. Nuclear Tracks and Radiation Measurements 10(4–6): 647–653, DOI 10.1016/0735-245X(85)90071-7.
 
4.
Allison J., et al. (Geant4 Collaboration), 2006. Geant4 developments and applications. IEEE Transactions on Nuclear Sciences 53: 270–278, DOI 10.1109/TNS.2006.869826. http://dx.doi.org/10.1109/TNS.....
 
5.
Allyson JD and Sanderson DCW, 1998. Monte Carlo simulations of environmental airborne gamma-spectrometry. Journal of Environmental Radioactivity 38(3): 259–282, DOI 10.1016/S0265-931X(97)00040-4. http://dx.doi.org/10.1016/S026....
 
6.
Allyson JD and Sanderson DCW, 2001. Spectral deconvolution and operational use of stripping ratios in airborne radiometrics. Journal of Environmental Radioactivity 53(3): 351–363, DOI 10.1016/S0265-931X(00)00141-7. http://dx.doi.org/10.1016/S026....
 
7.
Aznar MC, Nathan RP. Murray AS and Botter-Jensen L, 2003. Deter-mination of differential dose rates in a mixed beta and gamma field using shielded Al2O3: C results of Monte Carlo modelling. Radiation Measurements 37(4–5): 329–334, DOI 10.1016/S1350-4487(03)00003-9. http://dx.doi.org/10.1016/S135....
 
8.
Bailiff IK and Slim HA, 2008. Development of reference database for gamma dose assessment in retrospective luminescence dosimetry. Radiation Measurements 43(2–6): 859–863, DOI 10.1016/j.radmeas.2007.12.020. http://dx.doi.org/10.1016/j.ra....
 
9.
Bargholz K and Korsbech U, 1997. Conversion of Airborne Gamma Ray Spectra to Ground Level Air Kerma Rates. Radiation Protection Dosimetry 73(1–4): 127–130.
 
10.
Benke RR and Kearfott KJ, 2001. An improved in situ method for determining depth distributions of gamma-ray emitting radionuclides. Nuclear Instruments and Methods in Physics Research A 463(1–2): 393–412, DOI 10.1016/S0168-9002(01)00449-1. http://dx.doi.org/10.1016/S016....
 
11.
Brennan BJ, Schwarcz HP and Rink J, 1997. Simulation of the gamma radiation field in lumpy environments. Radiation Measurements 27(2): 299–305, DOI 10.1016/S1350-4487(96)00133-3. http://dx.doi.org/10.1016/S135....
 
12.
Bucher B, Rybach L and Schwarz G, 2008. Search for long-term radiation trends in the environs of Swiss nuclear power plants. Journal of Environmental Radioactivity 99(8): 1311–1318, DOI 10.1016/j.jenvrad.2008.04.004. http://dx.doi.org/10.1016/j.je....
 
13.
Fain J, Erramli H, Miallier D, Montret M and Sanzelle S, 1985. Environmental gamma dosimetry using TL dosimeters: Efficiency and absorption calculations. Nuclear Tracks and Radiation Measurements 10(4–6): 639–646, DOI 10.1016/0735-245X(85)90070-5.
 
14.
Guérin G and Mercier N, 2011. Determining gamma dose rates by field gamma spectroscopy in sedimentary media: results of Monte Carlo simulations. Radiation Measurements 46(2): 190–195, DOI 10.1016/j.radmeas.2010.10.003. http://dx.doi.org/10.1016/j.ra....
 
15.
Guimarães CC, Moralles M and Okuno E, 2008. Performance of GEANT4 in dosimetry applications: Calculation of X-ray spectra and kerma-to-dose equivalent conversion coefficients. Radiation Measurements 43(9-10): 1525–1531, DOI 10.1016/j.radmeas.2008.07.001. http://dx.doi.org/10.1016/j.ra....
 
16.
ICRU, 1994. In situ Gamma-ray Spectrometry in the environment. Report by the International Committee for Radiological Units No. 53.
 
17.
Kastlander J and Bargholtz C, 2005. Efficient in situ method to determine radionuclide concentration in soil. Nuclear Instruments and Methods in Physics Research A 547(2–3): 400–410, DOI 10.1016/j.nima.2005.03.143. http://dx.doi.org/10.1016/j.ni....
 
18.
Korun M, Likar A, Lipoglavsek M, Martincic R and Pucelj B, 1994. In situ measurement of Cs distribution in soil. Nuclear Instruments and Methods in Physics Research B 93(4): 485–491, DOI 10.1016/0168-583X(94)95638-3. http://dx.doi.org/10.1016/0168....
 
19.
Liritzis Y and Galloway RB, 1980. A new technique for calibrating a NaI(Tl) scintillometer used to measure gamma dose rates in archaeological sites. Nuclear Instruments and Methods 174(3): 593–597, DOI 10.1016/0029-554X(80)91115-5. http://dx.doi.org/10.1016/0029....
 
20.
Løvborg L and Kirkegaard P, 1974. Response of 3″ × 3″ NaI(Tl) detectors to terrestrial gamma radiation. Nuclear Instruments and Methods 121(2): 239–251, DOI 10.1016/0029-554X(74)90072-X. http://dx.doi.org/10.1016/0029....
 
21.
Løvborg L, Bøtter-Jensen L, Kirkegaard P and Christiansen EM, 1979. Monitoring of soil natural radioactivity with portable gamma-ray spectrometer. Nuclear Instruments and Methods 167(2): 341–348, DOI 10.1016/0029-554X(79)90021-1. http://dx.doi.org/10.1016/0029....
 
22.
Mercier N, Valladas H, Joron J-L, Schiegl S, Bar-Yosef O and Weiner S, 1995. Thermoluminescence dating and the problem of geo-chemical evolution of sediments. A case study: the Mousterian levels at Hayonim. Israel Journal of Chemistry 35: 137–141.
 
23.
Mercier N and Falguères C, 2007. Field gamma dose rate measurement with a NaI (Tl) detector: re-evaluation of the “threshold” technique. Ancient TL 25: 1–4.
 
24.
Miallier D, Guérin G, Mercier N, Pilleyre T and Sanzelle S, 2009. The Clermont radiometric reference rocks: a convenient tool for dosimetric purposes. Ancient TL 27: 37–44.
 
25.
Miller KM, Shebell P and Klemic GA, 1994. In situ gamma ray spectrometry for the measurement of uranium in surface soils. Health Physics 67(2): 140–150. http://dx.doi.org/10.1097/0000....
 
26.
Murray AS, Bowman SGE and Aitken MJ, 1978. Evaluation of the gamma dose rate contribution. PACT 2: 84–96.
 
27.
Nathan R, Thomas PJ, Murray AS and Rhodes EJ, 2003. Environmental dose rate heterogeneity of beta radiation and its implications for luminescence dating: Monte Carlo modelling and experimental validation. Radiation Measurements 37(4–5): 305–313, DOI 10.1016/S1350-4487(03)00008-8. http://dx.doi.org/10.1016/S135....
 
28.
Nathan RP and Mauz B, 2008. On the dose rate estimate of carbonate-rich sediments for trapped charge dating. Radiation Measurements 43(1): 14–25, DOI 10.1016/j.radmeas.2007.12.012. http://dx.doi.org/10.1016/j.ra....
 
29.
Sanderson DCW and Placido F, 1985. Scottish vitrified forts: back-ground and potential for TL dating. Nuclear Tracks 10(4–6): 799–809, DOI 10.1016/0735-245X(85)90093-6.
 
30.
Thummerer S and Jacob P, 1998. Determination of depth distributions of natural radionuclides with in situ gamma ray spectrometry. Nuclear Instruments and Methods in Physics Research A 416(1): 161–178, DOI 10.1016/S0168-9002(98)00636-6. http://dx.doi.org/10.1016/S016....
 
31.
Tyler AN, 1999. Monitoring anthropogenic radioactivity in salt marsh environments through in situ gamma ray spectrometry. Journal of Environmental Radioactivity 45(3): 235–252, DOI 10.1016/S0265-931X(98)00110-6. http://dx.doi.org/10.1016/S026....
 
32.
Tyler AN, 2004. High accuracy in situ radiometric mapping. Journal of Environmental Radioactivity 72(1–2): 195–202, DOI 10.1016/S0265-931X(03)00202-9. http://dx.doi.org/10.1016/S026....
 
33.
Tyler AN, Sanderson DCW and Scott EM, 1996. Estimating and accounting for 137Cs source burial through in situ gamma spectrometry in salt marsh environments. Journal of Environmental Radioactivity 33(3): 195–212, DOI 10.1016/0265-931X(95)00098-U. http://dx.doi.org/10.1016/0265....
 
34.
Tyler AN and Copplestone D, 2007. Preliminary results from the first national in situ gamma spectrometry survey of the United Kingdom. Journal of Environmental Radioactivity 17(2–3): 97–106, DOI 10.1016/0265-931X(92)90019-P.
 
35.
Zombori P, Andrrasi A and Nemeth I, 1992. In situ gamma spectrometric measurements of the contamination in some selected settlements of Byelorussia (BSSR), Ukraine (UkrSSR) and the Russian Federation (RSFSR). Journal of Environmental Radioactivity 96(1–3): 94–102, DOI 10.1016/j.jenvrad.2007.01.029.
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top