RESEARCH PAPER
Future Directions of Luminescence Dating of Quartz
 
 
More details
Hide details
 
Online publication date: 2011-01-05
 
 
Publication date: 2010-01-01
 
 
Geochronometria 2010;37:1-7
 
KEYWORDS
ABSTRACT
Recent developments in our understanding of the limitations of optically stimulated luminescence as a dating tool are presented alongside summaries of results obtained on other luminescence signals measured in sedimentary quartz grains.
REFERENCES (101)
1.
Adamiec G, 2005. OSL decay curves - relationship between single- and multiple- grain aliquots. Radiation Measurements 39(1): 63-75, DOI 10.1016/j.radmeas.2004.03.007.10.1016/j.radmeas.2004.03.007.
 
2.
Adamiec G, Bailey RM, Wang XL and Wintle AG 2008. The mechanism of thermally transferred optically stimulated luminescence in quartz. Journal of Physics D-Applied Physics 41(13): 135503, DOI 10.1088/0022-3727/41/13/13550310.1088/0022-3727/41/13/135503.
 
3.
Athanassas C and Zacharias N, 2010. Recuperated-OSL dating of quartz from Aegean (South Greece) raised Pleistocene marine sediments: current results. Quaternary Geochronology 5(1): 65-75, DOI 10.1016/j.quageo.2009.09.010.10.1016/j.quageo.2009.09.010.
 
4.
Bailey RM, 2000a. The interpretation of quartz optically stimulated luminescence equivalent dose versus time plots. Radiation Measurements 32(2): 129-140.DOI 10.1016/S1350-4487(99)00256-5.10.1016/S1350-4487(99)00256-5.
 
5.
Bailey RM, 2000b. The slow component of quartz optically stimulated luminescence. Radiation Measurements 32 (3): 233-246, DOI 10.1016/S1350-4487(99)00285-1.10.1016/S1350-4487(99)00285-1.
 
6.
Bailey RM, 2003a. Paper I - The use of measurement-time dependent single-aliquot equivalent-dose estimates from quartz in the identification of incomplete signal resetting. Radiation Measurements 37(4-5):511-518, DOI 10.1016/S1350-4487(03)00078-7.10.1016/S1350-4487(03)00078-7.
 
7.
Bailey RM, 2003b. Paper II - The interpretation of measurement-time-dependent single-aliquot equivalent-dose estimates using predictions from a simple empirical model. Radiation Measurements 37(4-5): 685-691, DOI 10.1016/S1350-4487(03)00079-9.10.1016/S1350-4487(03)00079-9.
 
8.
Bailey RM, 2004. Paper I - simulation of dose absorption in quartz over geological timescales and its implications for the precision and accuracy of optical dating. Radiation Measurements 38(3): 299-310, DOI 10.1016/j.radmeas.2003.09.005.10.1016/j.radmeas.2003.09.005.
 
9.
Bailey RM, 2010. Direct measurement of the fast component of quartz optically stimulated luminescence and implications for the accuracy of optical dating. Quaternary Geochronology. 5(5), 559-568, DOI 10.1016/j.quageo.2009.10.003.10.1016/j.quageo.2009.10.003.
 
10.
Bailey RM, Singarayer JS, Ward S and Stokes S, 2003. Identification of partial resetting using De as a function of illumination time. Radiation Measurements 37(4-5): 511-518, DOI 10.1016/S1350-4487(03)00063-5.10.1016/S1350-4487(03)00063-5.
 
11.
Bailey RM, Smith BW and Rhodes EJ, 1997. Partial bleaching and the decay form characteristics of quartz OSL. Radiation Measurements 27 (2): 123-136, DOI 10.1016/S1350-4487(96)00157-6.10.1016/S1350-4487(96)00157-6.
 
12.
Ballarini M, Wallinga J, Wintle AG and Bos AJJ, 2007. A modified SAR protocol for optical dating of individual grains from young quartz samples. Radiation Measurements 42(3): 360-369, DOI 10.1016/j.radmeas.2006.12.016.10.1016/j.radmeas.2006.12.016.
 
13.
Barton RNE, Bouzouggar A, Collcutt SN, Schwenninger JL and Clark-Balzan L, 2009. OSL dating of the Aterian levels at Dar es-Soltan I (Rabat, Morocco) and implications for the dispersal of modern Homo sapiens. Quaternary Science Reviews 28(19-20): 1914-1931, DOI 10.1016/j.quascirev.2009.03.010.10.1016/j.quascirev.2009.03.010.
 
14.
Bateman MD, 2008. Luminescence dating of periglacial sediments and structures. Boreas 37(4): 574-588, DOI 10.1111/j.1502-3885.2008.00050.x.10.1111/j.1502-3885.2008.00050.x.
 
15.
Bos AJ and Wallinga J, 2009. Optically stimulated luminescence signals under various stimulation modes assuming first-order kinetics. Physical Review B 79(19): 195118, DOI 10.1103/PhysRevB.79.195118.10.1103/PhysRevB.79.195118.
 
16.
Bouzouggar A, Barton N, Vanhaeren M, d'Errico F, Collcutt S, Higham T, Hodge E, Parfitt S, Rhodes E, Schwenninger JL, Stringer C, Turner E, Ward S, Moutmir A and Stambouli A, 2007. 82,000-year-old shell beads from North Africa and implications for the origins of modern human behaviour. Proceedings of the National Academy of Sciences of the United States of America 104(24): 9964-9969, DOI 2007, DOI 10.1073/pnas.0703877104.10.1073/pnas.0703877104.
 
17.
Brown KS, Marean CW, Herries AIR, Jacobs Z, Tribolo C, Braun D, Roberts DL, Meyer MC and Bernatchez J, 2009. Fire as an engineering tool of Early Modern Humans. Science 325(5942): 859-862, DOI 10.1126/science.1175028.
 
18.
Bulur E, 1996. An alternative technique for optically stimulated luminescence (OSL) experiment. Radiation Measurements 26(5): 701-709, DOI 10.1016/S1350-4487(97)82884-3.10.1016/S1350-4487(97)82884-3.
 
19.
Bulur E, 2000. A simple transformation for converting CW-OSL curves to LM-OSL curves. Radiation Measurements 32 (2): 141-145, DOI 10.1016/S1350-4487(99)00247-4.10.1016/S1350-4487(99)00247-4.
 
20.
Bulur E, Bøtter-Jensen L and Murray AS, 2000. Optically stimulated luminescence from quartz measured using the linear modulation technique. Radiation Measurements 32(5-6): 407-411, DOI 10.1016/S1350-4487(00)00115-3.10.1016/S1350-4487(00)00115-3.
 
21.
Buylaert JP, Murray AS, Huot S, Vriend MGA, Vandenberghe D, De Corte F and Van den haute P, 2006. A comparison of quartz OSL and isothermal TL measurements on Chinese loess. Radiation Protection Dosimetry 119(1-4): 474-478, DOI 10.1093/rpd/nci518.10.1093/rpd/nci51816709714.
 
22.
Buylaert JP, Murray AS, Vandenberghe D, Vriend M, De Corte F and Van den haute P, 2008. Optical dating of Chinese loess using sandsized quartz: Establishing a time frame for Late Pleistocene climate changes in the western part of the Chinese Loess Plateau. Quaternary Geochronology 3(1-2): 99-113, DOI 10.1016/j.quageo.2007.05.003.10.1016/j.quageo.2007.05.003.
 
23.
Choi JH, Duller GAT, Wintle AG and Cheong CS, 2006a. Luminescence characteristics of quartz from the Southern Kenyan Rift Valley: Dose estimation using LM-OSL SAR. Radiation Measurements 41(7-8): 847-854, DOI 10.1016/j.radmeas.2006.05.003.10.1016/j.radmeas.2006.05.003.
 
24.
Choi JH, Murray AS, Cheong CS, Hong DG and Chang HW, 2006b. Estimation of equivalent dose using quartz isothermal TL and the SAR procedure. Quaternary Geochronology 1 (2): 101-108, DOI 10.1016/j.quageo.2006.05.010.10.1016/j.quageo.2006.05.010.
 
25.
Chruścińska A, 2009. Modelling the thermal bleaching of OSL signal in the case of a competition between recombination centres. Radiation Measurements 44(4): 329-337, DOI 10.1016/j.radmeas.2009.04.007.10.1016/j.radmeas.2009.04.007.
 
26.
Duller GAT, 2008. Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas 37(4): 589-612, DOI 10.1111/j.1502-3885.2008.00051.x10.1111/j.1502-3885.2008.00051.x.
 
27.
Duller GAT, Bøtter-Jensen L, Murray AS and Truscott AJ, 1999. Single grain laser luminescence (SGLL) measurements using a novel automated reader. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 155(4): 506-514, DOI 10.1016/S0168-583X(99)00488-7.10.1016/S0168-583X(99)00488-7.
 
28.
Fan AC, Li SH and Li B, 2009. Characteristics of quartz infrared stimulated luminescence (IRSL) at elevated temperatures. Radiation Measurements 44(5-6): 434-438, DOI 10.1016/j.radmeas.2009.02.019.10.1016/j.radmeas.2009.02.019.
 
29.
Fuchs M and Lang A, 2009. Luminescence dating of hillslope deposits-A review. Geomorphology 109(1-2): 17-26, DOI 10.1016/j.geomorph.2008.08.025.10.1016/j.geomorph.2008.08.025.
 
30.
Fuchs M and Owen LA, 2008. Luminescence dating of glacial and associated sediments: review, recommendations and future directions. Boreas 37(4): 636-659, DOI 10.1111/j.1502-3885.2008.00052.x10.1111/j.1502-3885.2008.00052.x.
 
31.
Ganzawa Y and Maeda M, 2009. 390-410 °C isothermal red thermoluminescence (IRTL) dating of volcanic quartz using the SAR method. Radiation Measurements 44(5-6): 517-522, DOI 10.1016/j.radmeas.2009.06.005.10.1016/j.radmeas.2009.06.005.
 
32.
Huntley DJ, Godfrey-Smith DI and Thewalt ML W, 1985. Optical dating of sediments. Nature 313(5998): 105-107, DOI10.1038/313105a0.10.1038/313105a0.
 
33.
Huntley DJ, Godfrey-Smith DI and Haskell EH, 1991. Light-induced emission-spectra from some quartz and feldspars. Nuclear Tracks and Radiation Measurements 18(1-2): 127-131, DOI 10.1016/1359-0189(91)90104-P.10.1016/1359-0189(91)90104-P.
 
34.
Huot S, Buylaert JP and Murray AS, 2006. Isothermal thermoluminescence signals from quartz. Radiation Measurements 41(7-8): 796-802, DOI 10.1016/j.radmeas.2006.05.001.10.1016/j.radmeas.2006.05.001.
 
35.
Jacobs Z, 2008. Luminescence chronologies for coastal and marine sediments. Boreas 37(4): 508-535, DOI 10.1111/j.1502-3885.2008.00054.x.10.1111/j.1502-3885.2008.00054.x.
 
36.
Jacobs Z, Duller GAT, Wintle AG and Henshilwood CS, 2006. Extending the chronology of deposits at Blombos Cave, South Africa, back to 140 ka using optical dating of single and multiple grains of quartz. Journal of Human Evolution 51(3): 255-273, DOI 10.1016/j.jhevol.2006.03.007.10.1016/j.jhevol.2006.03.007.
 
37.
Jacobs Z, Roberts RG, Galbraith RF, Deacon HJ, Grün R, Mackay A, Mitchell P, Vogelsang R and Wadley L, 2008a. Ages for the Middle Stone Age of Southern Africa: Implications for Human Behavior and Dispersal. Science 322(5902): 733-735, DOI 10.1126/science.1162219.
 
38.
Jacobs Z, Wintle AG, Roberts RG and Duller GAT, 2008b. Equivalent dose distributions from single grains of quartz at Sibudu, South Africa: context, causes and consequences for optical dating of archaeological deposits. Journal of Archaeological Science 35(7): 1808-1820, DOI 10.1016/j.jas.2007.11.027.10.1016/j.jas.2007.11.027.
 
39.
Jain M, 2009. Extending the dose range: Probing deep traps in quartz with 3.06 eV photons. Radiation Measurements 44(5-6): 445-452, DOI 10.1016/j.radmeas.2009.03.011.10.1016/j.radmeas.2009.03.011.
 
40.
Jain M, Murray AS and Bøtter-Jensen L, 2003. Characterisation of bluelight stimulated luminescence components in different quartz samples: implications for dose measurement. Radiation Measurements 37(4-5): 441-449, DOI 10.1016/S1350-4487(03)00052-0.10.1016/S1350-4487(03)00052-0.
 
41.
Jain M, Murray AS, Bøtter-Jensen L and Wintle AG, 2005. A singlealiquot regenerative-dose method based on IR (1.49 eV) bleaching of the fast OSL component in quartz. Radiation Measurements 39(3): 309-318, DOI 10.1016/j.radmeas.2004.05.004.10.1016/j.radmeas.2004.05.004.
 
42.
Jain M, Bøtter-Jensen L, Murray AS and Essery R, 2007a. A peak structure in isothermal luminescence signals in quartz: Origin and implications. Journal of Luminescence 127(2): 678-688, DOI 10.1016/j.jlumin.2007.04.003.10.1016/j.jlumin.2007.04.003.
 
43.
Jain M, Duller GAT and Wintle AG, 2007b. Dose response, thermal stability and optical bleaching of the 310 °C isothermal TL signal in quartz. Radiation Measurements 42(8): 1285-1293, DOI 10.1016/j.radmeas.2007.08.008.10.1016/j.radmeas.2007.08.008.
 
44.
Kim JC, Duller GAT, Roberts HM, Wintle AG, Lee YI and Yi SB, 2009. Dose dependence of thermally transferred optically stimulated luminescence signals in quartz. Radiation Measurements 44(2): 132-143, DOI 10.1016/j.radmeas.2008.12.001.10.1016/j.radmeas.2008.12.001.
 
45.
Kitis G, Kiyak N, Polymeris GS and Tsirliganis NC, 2010. The correlation of fast OSL component with the TL peak at 325°C in quartz of various origins. Journal of Luminescence 130(2): 298-303, DOI 10.1016/j.jlumin.2009.09.006.10.1016/j.jlumin.2009.09.006.
 
46.
Kitis G, Polymeris GS and Kiyak NG, 2007. Component-resolved thermal stability and recuperation study of the LM-OSL curves of four sedimentary quartz samples. Radiation Measurements 42(8): 1273-1279, DOI 10.1016/j.radmeas.2007.05.050.10.1016/j.radmeas.2007.05.050.
 
47.
Kiyak NG, Polymeris GS and Kitis G, 2007. Component resolved OSL dose response and sensitization of various sedimentary quartz samples. Radiation Measurements 42(2): 144-155, DOI 10.1016/j.radmeas.2007.05.050.10.1016/j.radmeas.2007.02.052.
 
48.
Lai ZP, 2006. Testing the use of an OSL standardised growth curve (SGC) for De determination on quartz from the Chinese Loess Plateau. Radiation Measurements 41(1): 9-16, DOI 10.1016/j.radmeas.2005.06.031.10.1016/j.radmeas.2005.06.031.
 
49.
Lai ZP, 2010. Chronology and the upper dating limit for loess samples from Luochuan section in the Chinese Loess Plateau using quartz OSL SAR protocol. Journal of Asian Earth Sciences 37(2): 176-185, DOI 10.1016/j.jseaes.2009.08.003.10.1016/j.jseaes.2009.08.003.
 
50.
Lai ZP and Murray A, 2006. Red TL of quartz extracted from Chinese loess: Bleachability and saturation dose. Radiation Measurements 41(7-8): 836-840, DOI 10.1016/j.radmeas.2006.04.017.10.1016/j.radmeas.2006.04.017.
 
51.
Lai ZP, Murray AS, Bailey RM, Huot S and Bøtter-Jensen L, 2006. Quartz red TL SAR equivalent dose overestimation for Chinese loess. Radiation Measurements 41(1): 114-119, DOI 10.1016/j.radmeas.2005.06.006.10.1016/j.radmeas.2005.06.006.
 
52.
Lai ZP, Brückner H, Zöller L and Fülling A, 2007. Existence of a common growth curve for silt-sized quartz OSL of loess from different continents. Radiation Measurements 42(9): 1432-1440, DOI 10.1016/j.radmeas.2007.08.006.10.1016/j.radmeas.2007.08.006.
 
53.
Lai ZP, Brückner H, Fülling A and Zöller L, 2008. Effects of thermal treatment on the growth curve shape for OSL of quartz extracted from Chinese loess. Radiation Measurements 43(2-6): 763-766, DOI 10.1016/j.radmeas.2008.01.023.10.1016/j.radmeas.2008.01.023.
 
54.
Li SH and Li B, 2006. Dose measurement using the fast component of LM-OSL signals from quartz. Radiation Measurements 41(5): 534-541, DOI 10.1016/j.radmeas.2005.04.029.10.1016/j.radmeas.2005.04.029.
 
55.
Marean CW, Bar-Matthews M, Bernatchez J, Fisher E, Goldberg P, Herries AIR, Jacobs Z, Jerardino A, Karkanas P, Minichillo T, Nilssen PJ, Thompson E, Watts I and Williams HM, 2007. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature 449(7164): 905-U911, DOI10.1038/nature06204.
 
56.
Martini M, Fasoli M and Galli A, 2009. Quartz OSL emission spectra and the role of [AlO4]° recombination centres. Radiation Measurements 44(5-6): 458-461, DOI 10.1016/j.radmeas.2009.04.001.10.1016/j.radmeas.2009.04.001.
 
57.
Miallier D, Sanzelle S, Pilleyre T and Bassinet C, 2006. Residual thermoluminescence for sun-bleached quartz: Dependence on preexposure radiation dose. Quaternary Geochronology 1(4): 313-319, DOI 10.1016/j.quageo.2007.01.003.10.1016/j.quageo.2007.01.003.
 
58.
Morwood MJ, Soejono RP, Roberts RG, Sutikna T, Turney CSM, Westaway KE, Rink WJ, Zhao JX, van den Bergh GD, Due RA, Hobbs DR, Moore MW, Bird MI and Fifield LK, 2004. Archaeology and age of a new hominin from Flores in eastern Indonesia. Nature 431(7012): 1087-1091, DOI 10.1038/nature02956.
 
59.
Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32(1): 57-73, DOI 10.1016/S1350-4487(99)00253-X.10.1016/S1350-4487(99)00253-X.
 
60.
Murray AS, Roberts RG and Wintle AG, 1997. Equivalent dose measurement using a single aliquot of quartz. Radiation Measurements 27(2): 171-184, DOI 10.1016/S1350-4487(96)00130-8.10.1016/S1350-4487(96)00130-8.
 
61.
Murray AS, Svendsen JI, Mangerud J and Astakhov VI, 2007. Testing the accuracy of quartz OSL dating using a known-age Eemian site on the river Sula, northern Russia. Quaternary Geochronology 2(1-4): 102-109, DOI 10.1016/j.quageo.2006.04.004.10.1016/j.quageo.2006.04.004.
 
62.
Murray A, Buylaert JP, Henriksen M, Svendsen JI and Mangerud J, 2008. Testing the reliability of quartz OSL ages beyond the Eemian. Radiation Measurements 43(2-6): 776-780, DOI 10.1016/j.radmeas.2008.01.014.10.1016/j.radmeas.2008.01.014.
 
63.
Nian XM, Zhou LP and Qin JT, 2009. Comparisons of equivalent dose values obtained with different protocols using a lacustrine sediment sample from Xuchang, China. Radiation Measurements 44(5-6): 512-516, DOI 10.1016/j.radmeas.2009.06.002.10.1016/j.radmeas.2009.06.002.
 
64.
Pagonis V, Wintle AG, Chen R and Wang XL, 2009. Simulations of thermally transferred OSL experiments and of the ReSAR dating protocol for quartz. Radiation Measurements 44(5-6): 634-638, DOI 10.1016/j.radmeas.2009.02.009.10.1016/j.radmeas.2009.02.009.
 
65.
Pawley SM, Bailey RM, Rose J, Moorlock BSP, Hamblin RJO, Booth SJ and Lee JR, 2008. Age limits on Middle Pleistocene glacial sediments from OSL dating, north Norfolk, UK. Quaternary Science Reviews 27(13-14): 1363-1377, DOI 10.1016/j.quascirev.2008.02.013.10.1016/j.quascirev.2008.02.013.
 
66.
Pawley SM, Toms P, Armitage SJ and Rose J, 2010. Quartz luminescence dating of Anglian Stage (MIS 12) fluvial sediments: Comparison of SAR age estimates to the terrace chronology of the Middle Thames valley, UK. Quaternary Geochronology. Quaternary Geochronology 5(5): 569-582, DOI 10.1016/j.quageo.2009.09.013.10.1016/j.quageo.2009.09.013.
 
67.
Polymeris GS, Kiyak NG and Kitis G, 2008. Component resolved IR bleaching study of the blue LM-OSL signal of various quartz samples. Geochronometria 32: 79-85, DOI 10.2478/v10003-008-0028-310.2478/v10003-008-0028-3.
 
68.
Porat N, Chazan M, Grün R, Aubert M, Eisenmann V and Horwitz LK, 2010. New radiometric ages for the Fauresmith industry from Kathu Pan, southern Africa: Implications for the Earlier to Middle Stone Age transition. Journal of Archaeological Science 37(2): 269-283, DOI 10.1016/j.jas.2009.09.038.10.1016/j.jas.2009.09.038.
 
69.
Porat N, Duller GAT, Roberts HM and Wintle AG, 2009. A simplified SAR protocol for TT-OSL. Radiation Measurements 44(5-6): 538-542, DOI 10.1016/j.radmeas.2008.12.004.10.1016/j.radmeas.2008.12.004.
 
70.
Preusser F, Chithambo ML, Götte, T., Martini, M., Ramseyer, K., Sendezera, E. J., Susino, G. J. and Wintle, A. G., 2009. Quartz as a natural luminescence dosimeter. Earth-Science Reviews 97(1-4): 184-214, DOI 10.1016/j.earscirev.2009.09.006.10.1016/j.earscirev.2009.09.006.
 
71.
Qin JT and Zhou LP, 2009. Stepped-irradiation SAR: A viable approach to circumvent OSL equivalent dose underestimation in last glacial loess of northwestern China. Radiation Measurements 44(5-6): 417-422, DOI 10.1016/j.radmeas.2009.06.008.10.1016/j.radmeas.2009.06.008.
 
72.
Rhodes EJ, Singarayer JS, Raynal JP, Westaway KE and Sbihi-Alaoui FZ, 2006. New age estimates for the Palaeolithic assemblages and Pleistocene succession of Casablanca, Morocco. Quaternary Science Reviews 25(19-20): 2569-2585, DOI 10.1016/j.quascirev.2005.09.010.10.1016/j.quascirev.2005.09.010.
 
73.
Rittenour TM, 2008. Luminescence dating of fluvial deposits: applications to geomorphic, palaeoseismic and archaeological research. Boreas 37(4): 613-635, DOI 10.1111/j.1502-3885.2008.00056.x10.1111/j.1502-3885.2008.00056.x.
 
74.
Rittenour TM, Goble RJ and Blum MD, 2005. Development of an OSL chronology for Late Pleistocene channel belts in the lower Mississippi valley, USA. Quaternary Science Reviews 24(23-24): 2539-2554, DOI 10.1016/j.quascirev.2005.03.011.10.1016/j.quascirev.2005.03.011.
 
75.
Roberts HM, 2008. The development and application of luminescence dating to loess deposits: a perspective on the past, present and future. Boreas 37(4): 483-507, DOI 10.1111/j.1502-3885.2008.00057.x10.1111/j.1502-3885.2008.00057.x.
 
76.
Roberts HM and Duller GAT, 2004. Standardised growth curves for optical dating of sediment using multiple-grain aliquots. Radiation Measurements 38(2): 241-252, DOI 10.1016/j.radmeas.2003.10.001.10.1016/j.radmeas.2003.10.001.
 
77.
Roberts RG, Westaway KE, Zhao JX, Turney CSM, Bird MI, Rink WJ and Fifield LK, 2009. Geochronology of cave deposits at Liang Bua and of adjacent river terraces in the Wae Racang valley, western Flores, Indonesia: a synthesis of age estimates for the type locality of Homo floresiensis. Journal of Human Evolution 57(5): 484-502, DOI 10.1016/j.jhevol.2009.01.003.10.1016/j.jhevol.2009.01.003.
 
78.
Shen ZX and Mauz B, 2009. De determination of quartz samples showing falling De(t) plots. Radiation Measurements 44(5-6): 566-570, DOI 10.1016/j.radmeas.2009.06.003.10.1016/j.radmeas.2009.06.003.
 
79.
Singarayer JS and Bailey RM, 2003. Further investigations of the quartz optically stimulated luminescence components using linear modulation. Radiation Measurements 37(4-5): 451-458, DOI 10.1016/S1350-4487(03)00062-3.10.1016/S1350-4487(03)00062-3.
 
80.
Singarayer JS and Bailey RM, 2004. Component-resolved bleaching spectra of quartz optically stimulated luminescence: preliminary results and implications for dating. Radiation Measurements 38(1): 111-118, DOI 10.1016/S1350-4487(03)00250-6.10.1016/S1350-4487(03)00250-6.
 
81.
Singarayer JS, Bailey RM and Rhodes EJ, 2000. Potential of the slow component of quartz OSL for age determination of sedimentary samples. Radiation Measurements 32(5-6): 873-880, DOI 10.1016/S1350-4487(00)00074-3.10.1016/S1350-4487(00)00074-3.
 
82.
Singhvi AK and Porat N, 2008. Impact of luminescence dating on geomorphological and palaeoclimate research in drylands. Boreas 37(4): 536-558, DOI 10.1111/j.1502-3885.2008.00058.x10.1111/j.1502-3885.2008.00058.x.
 
83.
Steffen D, Preusser F and Schlunegger F, 2009. OSL quartz age under-estimation due to unstable signal components. Quaternary Geochronology 4(5): 353-362, DOI 10.1016/j.quageo.2009.05.015.10.1016/j.quageo.2009.05.015.
 
84.
Stevens T, Buylaert JP and Murray AS, 2009. Towards development of a broadly-applicable SAR TT-OSL dating protocol for quartz. Radiation Measurements 44(5-6): 639-645, DOI 10.1016/j.radmeas.2009.02.015.10.1016/j.radmeas.2009.02.015.
 
85.
Thomsen KJ, Bøtter-Jensen L, Denby PM, Moska P and Murray AS, 2006. Developments in luminescence measurement techniques. Radiation Measurements 41(7-8): 768-773, DOI 10.1016/j.radmeas.2006.06.010.10.1016/j.radmeas.2006.06.010.
 
86.
Thomsen KJ, Murray AS, Bøtter-Jensen L and Kinahan J, 2007. Determination of burial dose in incompletely bleached fluvial samples using single grains of quartz. Radiation Measurements 42(3): 370-379, DOI 10.1016/j.radmeas.2007.01.041.10.1016/j.radmeas.2007.01.041.
 
87.
Thrasher IM, Mauz B, Chiverrell RC and Lang A, 2009. Luminescence dating of glaciofluvial deposits: A review. Earth-Science Reviews 97(1-4): 133-146, DOI 10.1016/j.earscirev.2009.09.001.10.1016/j.earscirev.2009.09.001.
 
88.
Tsukamoto S, Murray AS, Huot S, Watanuki T, Denby PM and Bøtter-Jensen L, 2007. Luminescence property of volcanic quartz and the use of red isothermal TL for dating tephras. Radiation Measurements 42(2): 190-197, DOI 10.1016/j.radmeas.2006.07.008.10.1016/j.radmeas.2006.07.008.
 
89.
Tsukamoto S, Duller GAT and Wintle AG, 2008. Characteristics of thermally transferred optically stimulated luminescence (TT-OSL) in quartz and its potential for dating sediments. Radiation Measurements 43(7): 1204-1218, DOI 10.1016/j.radmeas.2008.02.018.10.1016/j.radmeas.2008.02.018.
 
90.
Vandenberghe DAG, Jain M and Murray AS, 2009. Equivalent dose determination using a quartz isothermal TL signal. Radiation Measurements 44(5-6): 439-444, DOI 10.1016/j.radmeas.2009.03.006.10.1016/j.radmeas.2009.03.006.
 
91.
Wallinga J, Bos AJJ and Duller GAT, 2008. On the separation of quartz OSL signal components using different stimulation modes. Radiation Measurements 43(2-6): 742-747, DOI 10.1016/j.radmeas.2008.01.013.10.1016/j.radmeas.2008.01.013.
 
92.
Wang XL, Lu YC and Wintle AG, 2006a. Recuperated OSL dating of fine-grained quartz in Chinese loess. Quaternary Geochronology 1(2): 89-100, DOI 10.1016/j.quageo.2006.05.020.10.1016/j.quageo.2006.05.020.
 
93.
Wang XL, Wintle AG and Lu YC, 2006b. Thermally transferred luminescence in fine-grained quartz from Chinese loess: Basic observations. Radiation Measurements 41(6): 649-658, DOI 10.1016/j.radmeas.2006.01.001.10.1016/j.radmeas.2006.01.001.
 
94.
Wang XL, Wintle AG and Lu YC, 2007. Testing a single-aliquot protocol for recuperated OSL dating. Radiation Measurements 42 (3): 380-391, DOI 10.1016/j.radmeas.2006.12.015.10.1016/j.radmeas.2006.12.015.
 
95.
Watanuki T, Murray AS and Tsukamoto S, 2005. Quartz and polymineral luminescence dating of Japanese loess over the last 0.6 Ma: Comparison with an independent chronology. Earth and Planetary Science Letters 240(3-4): 774-789, DOI 10.1016/j.epsl.2005.09.027.10.1016/j.epsl.2005.09.027.
 
96.
Westaway KE, 2009. The red, white and blue of quartz luminescence: A comparison of D-e values derived for sediments from Australia and Indonesia using thermoluminescence and optically stimulated luminescence emissions. Radiation Measurements 44(5-6): 462-466, DOI 10.1016/j.radmeas.2009.06.001.10.1016/j.radmeas.2009.06.001.
 
97.
Westaway KE and Roberts RG, 2006. A dual-aliquot regenerative-dose protocol (DAP) for thermoluminescence (TL) dating of quartz sediments using the light-sensitive and isothermally stimulated red emissions. Quaternary Science Reviews 25(19-20): 2513-2528, DOI 10.1016/j.quascirev.2005.06.010.10.1016/j.quascirev.2005.06.010.
 
98.
Westaway KE, Morwood MJ, Roberts RG, Rokus AD, Zhao JX, Storm P, Aziz F, van den Bergh G, Hadi P, Jatmiko and de Vos J, 2007. Age and biostratigraphic significance of the Punung Rainforest Fauna, East Java, Indonesia, and implications for Pongo and Homo. Journal of Human Evolution 53(6): 709-717, DOI 10.1016/j.jhevol.2007.06.002.10.1016/j.jhevol.2007.06.00217706269.
 
99.
Westaway KE, Morwood MJ, Sutikna T, Moore MW, Rokus AD, van den Bergh GD, Roberts RG and Saptomo E, 2009. Homo floresiensis and the late Pleistocene environments of eastern Indonesia: defining the nature of the relationship. Quaternary Science Reviews 28(25-26): 2897-2912, DOI 10.1016/j.quascirev.2009.07.020.10.1016/j.quascirev.2009.07.020.
 
100.
Wintle AG, 2008. Luminescence dating: where it has been and where it is going. Boreas 37(4): 471-482, DOI 10.1111/j.1502-3885.2008.00059.x10.1111/j.1502-3885.2008.00059.x.
 
101.
Wintle AG and Murray AS, 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in singlealiquot regeneration dating protocols. Radiation Measurements 41(4): 369-391, DOI 10.1016/j.radmeas.2005.11.001.10.1016/j.radmeas.2005.11.001.
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top