RESEARCH PAPER
Geochronology and Palaeomagnetic Records of the Snaigupėlė Section in South Lithuania
 
More details
Hide details
1
Nature Research Centre, Institute of Geology and Geography, Akademijos str. 2, 08412 Vilnius, Lithuania
 
2
Saint Petersburg State University, 10th Line, 33/35, V.O., 199178 St. Petersburg, Russia
 
 
Submission date: 2015-04-26
 
 
Acceptance date: 2015-09-02
 
 
Online publication date: 2015-11-10
 
 
Geochronometria 2015;42(1):172-181
 
KEYWORDS
ABSTRACT
The interglacial deposits in the South Lithuanian Snaigupėlė outcrop and borehole Snaigupėlė-705 are marked for different bedding conditions though the sections are in proximity of each other. In the borehole section, the interglacial deposits are thicker and bedding at a greater depth than the analogous deposits of the outcrop. In the Snaigupėlė outcrop, the highest compatibility of isochronic-correction dates, calculated using L/L (method of leaching) and TSD (method of total sample dissolution) models, was determined for combination of three samples. With the help of the f value (section of isochrones in the axis of ordinates), the contribution of the primary pollution with thorium was determined where, as based on corrected analytical data, isochronic-correction dating was performed: 127+18-14 ka years for the L/L model and 132+22-16 ka for the TSD model. Palaeomagnetic investigations showed that the section of lacustrine sediments in the lower part of Snaigupėlė outcrop were orientated by reversed magnetic excursion and in the upper part by normal magnetic polarity. Collation of the obtained data with the global geomagnetic scale showed that the palaeomagnetic in-version observed in the Snaigupėlė section was related with the Blake Event in the Eemian Interglacial.
 
REFERENCES (41)
1.
Baltrūnas V, 1995. Pleistoceno stratigrafija ir koreliacija (Stratigraphy and Correlation of Pleistocene). Vilnius, Academia: 180 pp (in Lithuanian with English summary).
 
2.
Baltrūnas V, 2002. Stratigrphical subdivision and correlation of Pleis-tocene deposits in Lithuania (methodical problems). Vilnius, Insti-tute of Geology: 74 pp.
 
3.
Baltrūnas V and Bitinas A, 1994. The polyvariance in stratigraphic correlation as a significant problem of the Lithuanian Pleistocene studies. Geologija 17: 144-151.
 
4.
Baltrūnas V, Šeiriėnė V, Molodkov A, Zinkutė R, Katinas V, Karmaza B, Kisielienė D, Petrošius R, Taraškevičius R, Piličiauskas G, Schmolcke U and Heinrich D, 2013. Depositional environment and climate changes during the late Pleistocene as recorded by the Netiesos section in southern Lithuania. Quaternary International 292: 136-149, DOI 10.1016/j.quaint.2012.11.038.
 
5.
Ber A, 2000. Plejstocen Polski północno-wschodniej w nawiązaniu do głębszego podłoża obszarów sąsiednich (in Polish with English summary). Prace Państwowego Instytutu Geologicznego 170: 1-89.
 
6.
Cohen KM and Gibbard PL, 2011. Global chronostratigraphical corre-lation table for the last 2.7 million years. University of Cambridge, Utrecht University, INQUA.
 
7.
Dreimanis A and Raukas A, 1975. Did Middle Wisconsin, Middle Weichselian, and their equivalents represent an interglacial or an interstadial complex in the northern hemisphere? Quaternary Stud-ies. The Royal Society of New Zealand Bulletin 13: 109-120.
 
8.
Ferré EC, Martín-Hernández F, Teyssier C and Jackson M, 2004. Para-magnetic and ferromagnetic anisotropy of magnetic susceptibility in migmatites: measurements in high and low fields and kinematic implications. Geophysical Journal International 157: 1119-1129, DOI 10.1111/j.1365-246X.2004.02294.x.
 
9.
Gaigalas AI, 1987. (The position of the Snaigupėlė and Židinė intergla-cial deposits in the strata of the Pleistocene moraines of different age). Geologija 8: 103-104 (in Russian with English summary).
 
10.
Geyh MA, 2001. Reflections on the 230Th/U dating of dirty material. Geochronometria 20: 9-14.
 
11.
Graham JW, 1966. Significance of magnetic anisotropy in Appalachian sedimentary rocks. In Steinhard JS et al., eds., The Earth Beneath the Continents. Geophysical Monograph 10: 627-648.
 
12.
Guobytė R and Satkūnas J, 2011. Pleistocene Glaciations in Lithuania. In: Developments in Quaternary Science 15 (eds. J.Ehlers, P.L. Gibbard, P.D. Hughes). Amsterdam, The Netherlands: 231-246.
 
13.
Head ML, Pillans B and Farquhar SA, 2008. The Early-Middle Pleisto-cene Transition: characterization and proposed guide for the defin-ing boundary. Episodes 31(2): 255-259.
 
14.
Henry B, 1973. Studies of microtectonics, anisotropy of magnetic susceptibility and paleomagnetism of the Permian Dome de Barrot (France): Paleotectonics and paleosedimentological implications. Tectonophysics 17: 61-72, DOI 10.1016/0040-1951(73)90065-6.
 
15.
Hrouda F, 1979. The strain interpretation of magnetic anisotropy in rocks of the Nizky Jesenik Mountains (Czechoslovakia). Sborník geologických věd UG 16: 27-62.
 
16.
Hrouda F, 2002. The use of the anisotropy of magnetic remanence in the resolution of the anisotropy of magnetic susceptibility into its fer-romagnetic and paramagnetic components. Tectonophysics 347: 269-281, DOI 10.1016/S0040-1951(02)00075-6.
 
17.
Hrouda F and Janak F, 1976. The changes in shape of the magnetic susceptibility ellipsoid during progressive metamorphism and de-formation. Tectonophysics 34: 135-148, DOI 10.1016/0040-1951(76)90181-5.
 
18.
Hrouda F, Janak F and Rejl L, 1978. Magnetic anisotropy and ductile deformation of rocks in zones of progressive regional metamor-phism. Gerlands Beitrage zur Geophysik 87: 126-134.
 
19.
Jelinek V, 1977. The statistical theory of measuring anisotropy of magnetic susceptibility of rocks and its application. Brno, s.p. Geofyzika, 88 pp.
 
20.
Kirschvink J, 1980. The least squares line and plane and the analysis of paleomagnetic data. Geophysical Journal of the Royal Astronomical Society 62: 699-718, DOI 10.1111/j.1365-246X.1980.tb02601.x.
 
21.
Kligfield R, Owens WH and Lowrie W, 1982. Magnetic susceptibility anisotropy, strain, and progressive deformation in Permian sedi-ments from the Maritime Alps (France). Earth and Planetary Sci-ence Letters 55: 181-189, DOI 10.1016/0012-821X(81)90097-2.
 
22.
Kondratienė O, 1958. Apie tarpledynmetinius darinius Druskininkų apylinkėje (The interglacial deposits in the vicinity of Druskininkai). Scientific Reports. The Academy of sciences of the Lithuanian SSR. Geologija Geografija 6: 77-89 (in Lithuanian with English summary).
 
23.
Kondratienė OP, 1973. O tipakh pyltsevykh diagram merkinskogo (mikulinskogo, riss-viurmskogo) mezhlednikovya Litvy i vopros ikh odnovozrastnosti (On the types of pollen diagrams of deposits of Merkinė (Mikulino, Riss-Würm) interglacial of Lithuania and the problem of their synchronity). In: Grichuk VP, ed., Palynology of Pleistocene and Pliocene, Moskow, Nauka: 44-48 (in Russian with English summary).
 
24.
Kondratienė O, 1996. Stratigraphiya i paleogeographiya kvarterą Litvy po paleobotanicheskim dannym (The Quaternary stratigraphy and paleogeography of Lithuania based on paleobotanic studies). Ac-ademia, Vilnius, Academia: 214 pp (in Russian with English summary).
 
25.
Kondratienė OP and Gaigalas AI, 1982. The structure of the Middle Pleistocene in the area of spreading of the Moscow ice sheet. The South Baltic Region. In: Московский ледниковый покров Восточной Европы. Moscow, Nauka: 73-82 (in Russian).
 
26.
Kuznetsov VYu and Maksimov FE, 2003. New Approach to Geochronology of Interglacial Sediments of the Russian Plain Based on the U-Th Dating of Buried Peat. Doklady Earth Science 393(8): 1132-1135.
 
27.
Kuznetsov V and Maksimov F, 2012. Methods of Quaternary geochro-nometry in Palaeogeography and Marine Geology. St. Petersburg: Nauka: 191 pp (in Russian).
 
28.
Lee T and Angelier J, 2000. Tectonic significance of magnetic suscepti-bility fabrics in Plio-Quaternary mudstones of southwestern foot-hills, Taiwan. Earth Planets Space 52: 527-538, DOI 10.1186/BF03351660.
 
29.
Lindner L, Marks L and Nita M, 2013. Climatostratigraphy of intergla-cials in Poland: Middle and Upper Pleistocene lower boundaries from Polish perspective. Quaternary International 292: 113-123, DOI 10.1016/j.quaint.2012.11.018.
 
30.
Liu B, Saito Y, Yamazaki T, Abdeldayem A, Oda H, Hori K and Zhao Q, 2005. Anisotropy of Magnetic Susceptibility (AMS) Character-istics of Tide-Influenced Sediments in the Late Pleistocene-Holocene Changjiang Incised-Valley Fill, China. Journal of Coastal Research 21(5): 1031-1041, DOI 10.2112/03-0078.1.
 
31.
Maksimov FE and Kuznetsov VYu, 2010. New version of the 230Th/U dating of the Upper and Middle Pleistocene buried organic-rich sediments. Bulletin of St. Petersburg State University 7(3): 103-114.
 
32.
Maksimov F, Arslanov Kh, Kuznetsov V and Chernov S, 2006. 230Th/U and 14C dating of Upper and Middle Pleistocene Interglacial and Interstadial organic deposits from the East- European Plain and Si-beria. In: M Frechen (ed.). Pleistocene Environments in Eurasia Chronology, Paleoclimate and Teleconnection. INTAS Final Workshop. Hannover, Geozentrum, 2-3 November: 45-49.
 
33.
Maksimov FE, Laukhin SA, Arslanov KhA, Kuznetsov VYu and Shi-lova GN, 2012. First 230Th/U date of Middle Pleistocene peat bog in Siberia (key section Krivosheino, Western Siberia). Geochronometria 39(4): 241-251, DOI 10.2478/s13386-012-0014-4.
 
34.
Panaiotu C, Necula C, Merezeanu T, Panaiotu A and Corban C, 2011. Anisotropy of magnetic susceptibility of quaternary lava flows from the East Carpathians. Romanian Reports in Physics 63(2): 526-534.
 
35.
Schwarcz HP and Latham AG, 1989. Dirty calcites: 1. Uranium-series dating of contaminated calcite using leachates alone. Chemical Geology: Isotope Geoscience section 80(1): 35-43, DOI 10.1016/0168-9622(89)90046-8.
 
36.
Shick SM, 2014. The palaeobotanical characteristics of the Middle Pleistocene post-Likhvin Interglacials in the East European Plain. Bulletin of comission for study of the Quaternary 73: 77-86 (in Russian with English summary).
 
37.
Sier MJ and Dekkers MJ, 2013. Magnetic property analysis as palaeoenvironmental proxy: a case study of the Last Interglacial Middle Palaeolithic site at Neumark-Nord 2 (Germany) In: S. Gaudzinski-Windheuser and W. Roebroeks (eds.), Geochronology and Palaeoenvironmental reconstruction of Neumark-Nord, Saxony-Anhalt, Germany. Eröffntlichungen des Landesamtes für Denkmalpflege und Archäeologie 69: 117-130.
 
38.
Sier MJ, Parés JM, Antoine P, Locht J-L, Dekkers MJ, Limondin-Lozouet N and Roebroeks W, 2015. Evidence for the Blake Event recorded at the Eemian archaeological site of Caours, France. Quaternary International 357: 149-157, DOI 10.1016/0168-9622(89)90046-8.
 
39.
Stephan H-J, 2014. Climato-stratigraphic subdivision of the Pleistocene in Schleswig-Holstein, Germany and adjoining areas - status and problems. E&G Quaternary Science Journal 63(1): 3-18, DOI 10.3285/eg.63.1.01.
 
40.
Šliaupa A, 2004. Prekvartero uolienų paviršius. In: V. Baltrūnas (ed), Lietuvos Žemės gelmių raida ir ištekliai. Vilnius, Petro ofsetas: 254-258 (in Lithuanian with English summary).
 
41.
Vonsavičius V, 1975. Privyazka nekotorykh mezhlednikovykh otlozheniy k razrezu chetvertichnoy tolshchi v raiyone srednego techeniya r. Nemunas (Snap some interglacial deposits to the section of Quaternary strata in the middle Nemunas River). In: Mahnach NA, ed., Stratigrafiya i paleogeografiya antropogena. Minsk, Nauka i tekhnika: 204-209 (in Russian).
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top