RESEARCH PAPER
Inter- and intra-annual carbon isotope fluctuations in Pinus sylvestris L. tree rings whole wood and cellulose in north-eastern Lithuania
 
More details
Hide details
1
Laboratory of Nuclear Geophysics and Radioecology, Nature Research Centre, Lithuania
 
2
Laboratory of Geophysics and Radioecology, Nature Research Centre, Lithuania
 
3
Laboratory of Quaternary Research, Nature Research Centre, Lithuania
 
These authors had equal contribution to this work
 
 
Submission date: 2023-06-29
 
 
Acceptance date: 2024-08-30
 
 
Online publication date: 2024-10-11
 
 
Publication date: 2024-10-11
 
 
Corresponding author
Darius Valūnas   

Laboratory of Nuclear Geophysics and Radioecology, Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
 
 
Geochronometria 2024;51(1)
 
KEYWORDS
TOPICS
ABSTRACT
In temperate regions trees typically exhibit growth sensitivity to climatic conditions during the growth season. Annual tree ring growth increments correlate with a variety of environmental factors. As an index of water use efficiency, δ13C is a preferred proxy to allow accurate interpretation of environmental factors critical for the tree growth, including changes in climate patterns, variation in the ambient temperature and precipitation. We assumed that isotopic differences within individual tree rings are likely to produce seasonal isotope fluctuations in the chronology that might be interpreted as response to environmental impacts. To verify the assumption, we measured δ13C in annual tree rings of Pinus Sylvestris L. split into 13 intra-annual segments each and checked δ13C correlations with temperature, precipitation, the number of sunshine hours and relative air humidity. For the investigation, we chose a site in north-eastern Lithuania, Zarasai, located in boreal latitude and remote from industrial pollution sources. The methodology of the research was based on high coherence of δ13C chronologies measured in the whole wood and α-cellulose extracted by means of two different methods. The experiment produced strong δ13C correlations with hydrometeorological parameters, especially in the earlywood formed in June
ACKNOWLEDGEMENTS
We would like to express our deepest appreciation to Dr. Rūta Barisevičiūtė and Dr. Andrius Garbaras, researchers of Isotopic Research Laboratory at the Centre for Physi-cal Sciences and Technology, for their assistance in con-ducting isotopic measurements necessary for the present research.
REFERENCES (84)
1.
Andreu-Hayles L, Levesque M, Martin-Benito D, Huang W, Harris R, Oelkers R, Leland C, Martin-Fernández J, Anchukaitis KJ and Helle G, 2019. A high yield cellulose extraction system for small whole wood samples and dual measurement of carbon and oxygen stable isotopes. Chemical Geology 504: 53–65, DOI 10.1016/j.chemgeo.2018.09.007.
 
2.
Barbour MM, Andrews TJ and Farquhar GD, 2001. Correlations between oxygen isotope ratios of wood constituents of Quercus and Pinus samples from around the world. Australian Journal of Plant Physiology 28: 335–348, DOI 10.1071/PP00083.
 
3.
Barisevičiūtė R, Skipitytė R, Pukienė R, Lapeikaitė I, Kakaras I and Remeikis V, 2017. Climatic sensitivity of delta13C in tree rings of Quercus robur L., Populus tremula L. and Pinus sylvestris L. in Vilnius region (eastern Lithuania). Dendrobiology 78: 1–9, DOI 10.12657/denbio.078.001.
 
4.
Bégin C, Gingras M, Savard MM, Marion J, Nicault A and Bégin Y, 2015. Assessing tree-ring carbon and oxygen stable isotopes for climate reconstruction in the Canadian northeastern boreal forest. Palaeogeography, Palaeoclimatology, Palaeoecology 423: 91–101, DOI 10.1016/j.palaeo.2015.01.021.
 
5.
Belmecheri S and Lavergne A, 2020. Compiled records of atmospheric CO2 concentrations and stable carbon isotopes to reconstruct climate and derive plant ecophysiological indices from tree rings. Dendrochronologia 63: 125748, DOI 10.1016/j.dendro.2020.125748.
 
6.
Belmecheri S, Wright WE and Szejner P, 2022. Sample collection and preparation for annual and intra-annual tree-ring isotope chronologies. Stable isotopes in tree rings: inferring physiological, climatic and environmental responses: Springer International Publishing, 103–134, DOI 10.1038/329708a0.
 
7.
Benner R, Fogel ML, Sprague EK and Hodson RE, 1991. Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature 329: 708–710, DOI 10.1038/329708a0.
 
8.
Bentz BJ, Jonsson AM, Schroeder M, Weed A, Wilcke R and Larsson K, 2019. Ips typographusand Dendroctonus ponderosae models project thermal suitability for Intra-and Inter-continental establishment in a changing climate. Frontiers in Forests and Global Change 2(1), DOI 10.3389/FFGC.2019.00001.
 
9.
Bonan GB and Shugart HH, 1989. Environmental factors and ecological processes in boreal forests. Annual review of Ecology and Systematics 20: 1–28, DOI 10.1146/annurev.es.20.110189.000245.
 
10.
Borella S, Leuenberger M, Saurer M and Siegwolf R, 1998. Reducing uncertainties in δ 13 C analysis of tree rings: Pooling, milling, and cellulose extraction. Journal of Geophysical Research: Atmospheres 103: 19519–19526, DOI 10.1029/98JD01169.
 
11.
Brendel O, Iannetta PPM and Stewart DA, 2000. Rapid and simple method to isolate pure alpha-cellulose. Phytochemical Analysis 11: 7–10, DOI 10.1002/(SICI)1099-1565(200001/02)11:1<7::AID-PCA488>3.0.CO;2-U.
 
12.
Brooks JR and Mithchell AK, 2011. Interpreting tree responses to thinning and fertilization using three-ring stable isotopes. New Phytologist 190(3): 770-782, DOI 10.1111/j.1469-8137.2010.03627.x.
 
13.
Brooks JR, Roden JS, Siegwolf RT and Saurer M, 2019. Stable isotopes in tree rings: Inferring physiological, climatic and environmental responses. AGU Fall Meeting Abstracts 2019: B44F-01).
 
14.
Crampton EW and Maynard LA, 1938. The relation of cellulose and lignin content to the nutritive value of animal feeds. The Journal of Nutrition 15: 383–395.
 
15.
Cullen LE and Grierson PF, 2006. Is cellulose extraction necessary for developing stable carbon and oxygen isotopes chronologies from Callitris glaucophylla? Palaeogeography, Palaeoclimatology, Palaeoecology 236: 206–216., DOI 10.1016/j.palaeo.2005.11.003.
 
16.
Cuny H, Rathgeber CBK, Frank D, Fonti P, Makinen H, Prislan P, Rossi S, del Castillo EM, Campelo F, Vavrcik H, JyskeT, Gricar J, Gryc V, De Luis M, Vieira J, Cufar K, Kirdyanov AV, Oberhuber W, Treml V, Huang J-G, Li X, Swidrak I, Deslauriers A, Liang E, Nojd P, Gruber A, Nabais C, Morin H, Krause C, King G and Fournier M, 2015. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nature Plants 15160(11): 1–6, DOI 10.1038/NPLANTS.2015.160.
 
17.
Eckstein D, 1983. Biological basis of dendrochronology, in: Eckstein D, Wrobel S, Aniol RW, eds., Workshop of the European Science Foundation, Bundes-forschungsanstalt Forst-Holzwirtschaft Hamburg, Hamburg, 1983, pp. 11–20.
 
18.
Eckstein D, 1987. Measurement and dating procedures in dendrochronology. In: Kairiukštis L, Bednarz Z, Feliksik E, eds., Methods of dendrochronology (3). IIASA, Warsaw, 35–44.
 
19.
Evans MN and Schrag DP, 2004. A stable isotope-based approach to tropical dendroclimatology. Geochimnica et Cosmochimnica Acta 68: 3295–3305, DOI 10.1016/j.gca.2004.01.006.
 
20.
Farquhar GD, Hubick KT, Condon AG and Richards RA, 1989a. Carbon Isotope Fractionation and Plant Water-Use Efficiency. In: Rundel PW, Ehleringer JR, Nagy KA, eds. New York, NY: Springer New York, 21–40, DOI 10.1007/978-1-4612-3498-2_2.
 
21.
Farquhar GD, Ehleringer JR and Hubick KT, 1989b. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40: 503–537, DOI 10.1146/annurev.pp.40.060189.002443.
 
22.
Farquhar GD, O’Leary MH and Berry JA, 1982. On the relationship between carbon isotope discrimination and inter-cellular carbon-dioxide concentration in leaves. Australian Journal of Plant Physiology 9: 121–137, DOI 10.1071/PP9820121.
 
23.
Ferrio JP and Voltas J, 2005. Carbon and oxygen isotope ratios in wood constituents of Pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit. Tellus B: Chemical and Physical Meteorology 57: 164–173, DOI 10.1111/j.1600-0889.2005.00137.x.
 
24.
Fonti MV, Vaganov EA, Wirth C, Shashkin AV, Astrakhantseva NV and Schulze Е-D, 2018. Age-Effect on Intra-Annual δ13C-Variability within Scots Pine Tree-Rings from Central Siberia. Forests 9(6): 364, DOI 10.3390/f9060364.
 
25.
Frank DC, Poulter B, Saurer M, Esper J, Huntingford C, Helle G, Treydte K, Zimmermann NE, Schleser GH, Ahlstrom A, Ciais P, Friedlingstein P, Levis S, Lomas M, Sitch S, Viovy N, Andreu-Hayles L, Bednarz Z, Berninger F, Boettger T, D'Alessandro CM, Daux V, Filot M, Grabner M, Gutierrez E, Haupt M, Hilasvuori E, Jungner H, Kalela-Brundin M, Krapiec M, Leuenberger M, Loader NJ, Marah H, Masson-Delmotte V, Pazdur A, Pawelczyk S, Pierre M, Planells O, Pukiene R, Reynolds-Henne CE, Rinne KT, Saracino A, Sonninen E, Stievenard M, Switsur VR, Szczepanek M, Szychowska-Krapiec E, Todaro L, Waterhouse JS and Weigl M, 2015. Water-use efficiency and transpiration across European forests during the Anthropocene. Nature Climate Change 5(6): 579–583, DOI 10.1038/nclimate2614.
 
26.
Fritts HC, 1976. Tree Rings and Climate, Academic Press, London.
 
27.
Gessler A, Ferrio JP, Hommel R, Treydte K, Werner R and Monson RK, 2014. Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiology 34: 796–818, DOI 10.1093/treephys/tpu040.
 
28.
Girardin MP and Tardif J, 2005. Sensitivity of tree growth to the atmospheric vertical profile in the Boreal Plains of Manitoba, Canada. Canadian Journal of Forest Research 35: 48–64, DOI 10.1139/X04-144.
 
29.
Gori Y, Wehrens R, Greule M, Keppler F, Ziller L, La Porta N and Camin F, 2013. Carbon, hydrogen and oxygen stable isotope ratios of whole wood, cellulose and lignin methoxyl groups of Picea abies as climate proxies. Rapid Communications in Mass Spectrometry 27: 265–275, DOI 10.1002/rcm.6446.
 
30.
Graumlich LJ, 1993. Response of tree growth to climatic variation in the mixed conifer and deciduous forests of the upper Great Lakes region. Canadian Journal of Forest Research 23: 133–143, DOI 10.1139/x93-020.
 
31.
Green JW, 1963. Methods of Carbohydrate Chemistry, III (Ed. R.L. Whistler). Academic Press, New York, NY, 9–21.
 
32.
Helle G and Schleser GH, 2004. Beyond CO2-fixation by Rubisco – an interpretation of 13C/12C variations in tree rings from novel intra-seasonal studies on broad-leaf trees. Plant, Cell and Environment 27: 367–380, DOI 10.1111/j.0016-8025.2003.01159.x.
 
33.
Jactel H, Petit J, Desprez-Loustau ML, Delzon S, Piou D, Battisti A and Koricheva J, 2011. Drought effects on damage by forest insects and pathogens: A meta-analysis. Global Change Biology 18(1): 267–276, DOI 10.1111/J.1365-2486.2011.02512.X.
 
34.
Jayme G, 1942. Preparation of holocellulose and cellulose with sodium chlorite. Cellul Chem. Technol 20: 43–49.
 
35.
Lavergne A, Graven H, De Kauwe M G, Keenan TF, Medlyn BE and Prentice IC, 2019. Observed and modelled historical trends in the water‐use efficiency of plants and ecosystems. Global Change Biology 25(7): 2242–2257, DOI 10.1111/gcb.14634.
 
36.
Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Hauck J, Pongratz J, Pickers PA, Korsbakken JI, Peters GP, Canadell JG, Arneth A, Arora VK, Barbero L, Bastos A, Bopp L, Chevallier F, Chini LP, Ciais P, Doney SC, Gkritzalis T, Goll DS, Harris I, Haverd V, Hoffman FM, Hoppema M, Houghton RA, Hurtt G, Ilyina T, Jain AK, Johannessen T, Jones CD, Kato E, Keeling RF, Goldewijk KK, Landschuetzer P, Lefevre N, Lienert S, Liu Z, Lombardozzi D, Metzl N, Munro DR, Nabel JEMS, Nakaoka S-I, Neill C, Olsen A, Ono T, Patra P, Peregon A, Peters W, Peylin P, Pfeil B, Pierrot D, Poulter B, Rehder G, Resplandy L, Robertson E, Rocher M, Roedenbeck C, Schuster U, Schwinger J, Seferian R, Skjelvan I, Steinhoff T, Sutton A, Tans PP, Tian H, Tilbrook B, Tubiello FN, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Wright R, Zaehle S and Zheng B, 2018. Global carbon budget 2018. Earth System Science Data 10(4): 2141–2194, DOI 10.5194/essd-10-2141-2018.
 
37.
Leavitt SW and Danzer SR, 1993. Method for batch processing small wood samples to holocellulose for stable-carbon isotope analysis. Analytical Chemistry 65: 87–89, DOI 10.1021/ac00049a017.
 
38.
Leavitt SW and Lone A, 1991. Seasonal stable-carbon isotope variability in tree rings: possible paleoenvironmental signals. Chemical Geology: Isotope Geoscience section 87(1): 59–70, DOI 10.1016/0168-9622(91)90033-S.
 
39.
Leuenberger M, Borella S, Stocker T, Saurer M, Siegwolf R, Schweingruber F and Matyssek R, 1998. Stable Isotopes in Tree-rings as Climate and Stress Indicators. Final Report NRP 31. Zürich: vdf Hochschulverlag. VDF, Zurich.
 
40.
Lévesque M, Rigling A, Bugmann H, Weber P and Brang P, 2014. Growth response of five co-occurring conifers to drought across a wide climatic gradient in Central Europe. Agricultural and Forest Meteorology 197: 1–12, DOI 10.1016/j.agrformet.2014.06.001.
 
41.
Loader NJ, Robertson I, Barker AC, Switsur VR and Waterhouse JS, 1997. An improved technique for the batch processing of small wholewood samples to α-cellulose. Chemical Geology 136: 313–317, DOI 10.1016/S0009-2541(96)00133-7.
 
42.
Loader NJ, Robertson I and McCarroll D, 2003. Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of oak tree-rings. Palaeogeography, Palaeoclimatology, Palaeoecology 196: 395–407, DOI 10.1016/S0031-0182(03)00466-8.
 
43.
Matveev S, Tishin D, Maximchuk P and Zhuravleva I, 2020. Seasonal radial growth dynamics of Scots pine (Pinus silvestris L.) in Voronezh region (Russia). In IOP Conference Series: Earth and Environmental Science 595(1): 012044, DOI 10.1088/1755-1315/595/1/012044.
 
44.
McCarroll D and Loader NJ, 2004. Stable isotopes in tree rings. Quaternary Science Reviews 23: 771–801, DOI 10.1016/j.quascirev.2003.06.017.
 
45.
Mirabel A, Girardin MP, Metsaranta J, Way D and Reich PB, 2023. Increasing atmospheric dryness reduces boreal forest tree growth. Nature Communications 14(1): 6901, DOI 10.1038/s41467-023-42466-1.
 
46.
Mischel M, Esper J, Keppler F, Greule M and Werner W, 2015. δ2H, δ13C and δ18O from whole wood, α-cellulose and lignin methoxyl groups in Pinus sylvestris: a multi-parameter approach. Isotopes in Environmental and Health Studies 51(4): 553–568, DOI 10.1080/10256016.2015.1056181.
 
47.
Pawelczyk S, Pazdur A and Halas S, 2004. Stable carbon isotopic composition of tree rings from a pine tree from Augustów Wilderness, Poland, as a temperature and local environment conditions indicator. Isotopes in Environmental and Health Studies 40(2): 145–154, DOI 10.1080/10256010410001671032.
 
48.
Pazdur A, Nakamura T, Pawełczyk S, Pawlyta J, Piotrowska N, Rakowski A, Sensula B and Szczepanek M, 2007. Carbon isotopes in tree rings: climate and the Suess effect interferences in the last 400 years. Radiocarbon 49(2): 775–788, DOI 10.1017/S003382220004265X.
 
49.
Piermattei A, Crivellaro A, Carrer M and Urbinati C, 2015. The “blue ring”: anatomy and formation hypothesis of a new tree-ring anomaly in conifers. Trees 29: 613–620, DOI 10.1007/s00468-014-1107-x.
 
50.
Pritzkow C, Heinrich I, Grudd H and Helle G, 2014. Relationship between wood anatomy, tree-ring widths and wood density of Pinus sylvestris L. and climate at high latitudes in northern Sweden, Dendrochronologia 32(4): 295–302, DOI 10.1016/j.dendro.2014.07.003.
 
51.
Pukienė R, Vitas A, Kažys J and Rimkus E, 2021. Four-decadal series of dendrometric measurements reveals trends in Pinus sylvestris inter- and intra-annual growth response to climatic conditions. Canadian Journal of Forest Research 51: 445–454, DOI 10.1139/CJFR-2020-0211.
 
52.
Remus R, Kaiser M, Kleber M, Augustin J, Sommer M, 2018. Demonstration of the rapid incorporation of carbon into protective, mineral-associated organic carbon fractions in an eroded soil from the CarboZALF experimental site. Plant and Soil 430: 329–348. DOI 10.1007/s11104-018-3724-4.
 
53.
Reyer C, Lasch-Born P, Suckow F, Gutsch M, Murawski A and Pilz T, 2014. Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Annals of Forest Science 71: 211–225, DOI 10.1007/S13595-013-0306-8.
 
54.
Romeiro JMN, Eid T, Antón-Fernández C, Kangas A and Trømborg E, 2022. Natural disturbances risks in European Boreal and Temperate forests and their links to climate change – A review of modelling approaches. Forest Ecology and Management 509: 120071, DOI 10.1016/j.foreco.2022.120071.
 
55.
Rossi S, Deslauriers A and Morin H, 2003. Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia 21(1): 33–39, DOI 10.1078/1125-7865-00034.
 
56.
Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R and Borghetti M, 2006. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytologist 170: 301–310, DOI 10.1111/j.1469-8137.2006.01660.x.
 
57.
Saurer M, Siegwolf RTW, Schweingruber FH, Saurer M, Siegwolf RT and Schweingruber FH, 2004. Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Global Change Biology 10: 2109–2120, DOI 10.1111/j.1365-2486.2004.00869.x.
 
58.
Saurer M, Spahni R, Frank DC, Joos F, Leuenberger M, Loader NJ, McCarroll D, Gagen M, Poulter B, Siegwolf RTW, Andreu-Hayles L, Boettger T, Dorado Linan I, Fairchild IJ, Friedrich M, Gutierrez E, Haupt M, Hilasvuori E, Heinrich I, Helle G, Grudd H, Jalkanen R, Levanic T, Linderholm HW, Robertson I, Sonninen E, Treydte K, Waterhouse JS, Woodley EJ, Wynn PM and Young GHF, 2014. Spatial variability and temporal trends in water-use efficiency of European forests. Global Change Biology 20: 3700–3712, DOI 10.1111/gcb.12717.
 
59.
Schleser GH, Frielingsdorf J and Blair A, 1999. Carbon isotope behaviour in wood and cellulose during artificial aging. Chemical Geology 158: 121–130, DOI 10.1016/S0009-2541(99)00024-8.
 
60.
Seidl R, Schelhaas MJ, Rammer W and Verkerk PJ, 2014. Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change 4(9): 806–810, DOI 10.1038/NCLIMATE2318.
 
61.
Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G and Reyer CPO, 2017. Forest disturbances under climate change. Nature Climate Change (7): 395–402, DOI 10.1038/NCLIMATE3303.
 
62.
Sensuła B and Wilczyński S, 2022. Dynamics Changes in Basal Area Increment, Carbon Isotopes Composition and Water Use Efficiency in Pine as Response to Water and Heat Stress in Silesia, Poland. Plants 11(24): 3569, DOI 10.3390/plants11243569.
 
63.
Sensuła B and Pazdur A, 2013. Stable carbon isotopes of glucose received from pine tree-rings as bioindicators of local industrial emission of CO2 in Niepołomice Forest (1950–2000). Isotopes in Environmental and Health Studies 49(4): 532–541, DOI 10.1080/10256016.2013.865026.
 
64.
Sensuła B, Wilczyński S and Opała M, 2015. Tree Growth and Climate Relationship: Dynamics of Scots Pine (Pinus Sylvestris L.) Growing in the Near-Source Region of the Combined Heat and Power Plant During the Development of the Pro-Ecological Strategy in Poland. Water Air Soil Pollut 226: 220, DOI 10.1007/s11270-015-2477-4.
 
65.
Sensuła B and Wilczyński S, 2018. Tree-ring widths and the stable isotope composition of pine tree-rings as climate indicators in the most industrialised part of Poland during CO2 elevation. Geochronometria 45(1): 130–145, DOI 10.1515/geochr-2015-0094.
 
66.
Sensuła BM, 2015. Spatial and Short-Temporal Variability of δ13C and δ15N and Water-Use Efficiency in Pine Needles of the Three Forests Along the Most Industrialized Part of Poland. Water Air Soil Pollution 226: 362, DOI 10.1007/s11270-015-2623-z.
 
67.
Sensuła BM, 2016. δ13C and Water Use Efficiency in the Glucose of Annual Pine Tree Rings as Ecological Indicators of the Forests in the Most Industrialized Part of Poland. Water Air Soil Pollution 227: 68, DOI 10.1007/s11270-016-2750-1.
 
68.
Seo J-W, Eckstein D, Jalkanen R and Schmitt U, 2011. Climatic control of intra- and inter-annual wood-formation dynamics of Scots pine in northern Finland. Environmental and Experimental Botany 72: 422–431, DOI 10.1016/j.envexpbot.2011.01.003.
 
69.
Shestakova T, Voltas J, Saurer M, Berninger F, Esper J, Andreu-Hayles L, Daux V, Helle G, Leuenberger M, Loader NJ, Masson-Delmotte V, Saracino A, Waterhouse JS, Schleser GH, Bednarz Z, Boettger T, Dorado-Linan I, Filot M, Frank D, Grabner M, Haupt M, Hilasvuori E, Jungner H, Kalela-Brundin M, Krapiec M, Marah H, Pawelczyk S, Pazdur A, Pierre M, Planells O, Pukiene R, Reynolds-Henne CE, Rinne-Garmston (Rinne) KT, Rita A, Sonninen E, Stievenard M, Switsur VR, Szychowska-Krapiec E, Szymaszek M, Todaro WR and Gutierrez E, 2019. Spatio‐temporal patterns of tree growth as related to carbon isotope fractionation in European forests under changing climate. Global Ecology and Biogeography 28(9): 1295–1309, DOI 10.1111/geb.12933.
 
70.
Sidorova OV, Siegwolf RTWW, Saurer M, Naurzbaev MM and Vaganov EA, 2008. Isotopic composition (δ13C, δ18O) in wood and cellulose of Siberian larch trees for early Medieval and recent periods. Journal of Geophysical Research: Biogeosciences 113: G02019, DOI 10.1029/2007JG000473.
 
71.
Spiker EC and Hatcher PG, 1987. The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood. Geochimica et Cosmochimica Acta 51: 1385–1391, DOI 10.1016/0016-7037(87)90323-1.
 
72.
Suberkropp K and Klug MJ, 1976. Fungi and bacteria associated with leaves during processing in a woodland stream. Ecology 57: 707–719, DOI 10.2307/1936184.
 
73.
Szejner P, Wright WE, Belmecheri S, Meko D, Leavitt SW, Ehleringer JR and Monson RK, 2018. Disentangling seasonal and interannual legacies from inferred patterns of forest water and carbon cycling using tree‐ring stable isotopes. Global change biology 24(11): 5332–5347, DOI 10.1111/gcb.14395.
 
74.
Szymczak S, Joachimski MM, Bräuning A, Hetzer T and Kuhlemann J, 2011. Comparison of whole wood and cellulose carbon and oxygen isotope series from Pinus nigra ssp. laricio (Corsica/France). Dendrochronologia 29: 219–226, DOI 10.1016/j.dendro.2011.04.001.
 
75.
Tardif J and Bergeron Y, 1997. Comparative dendroclimatological analysis of two black ash and two white cedar populations from contrasting sites in the Lake Duparquet region, northwestern Quebec. Canadian Journal of Forest Research 27(1): 108–116, DOI 10.1139/x96-150.
 
76.
Timofeeva G, Treydte K, Bugmann H, Rigling A, Schaub M, Siegwolf R and Saurer M, 2017. Long-term effects of drought on tree-ring growth and carbon isotope variability in Scots pine in a dry environment. Tree Physiology 37(8): 1028–1041, DOI 10.1093/treephys/tpx041.
 
77.
Tomlinson G, 2015. Tree responses to nitrogen deposition in a changing climate: using carbon and nitrogen stable isotopes in tree-rings and foliage. PhD Thesis. ETH Zurich.
 
78.
Treydte G, Schleser H, Esper J, Andreu L, Bednarz Z, BerningerF, Böttger T, D‘Allessandro CD, Etien N, Filot M, Frank D, Grabner M, Gutierrez E, Haupt M, Helle G, Hilasvuori E, Jungner H Kalela-Brundin M, Leuenberger M, Loader N, Masson-Delmotte V, Pazdur A, Planells O, Pukiene R, Reynolds C, Rinne K, Saurer M, Sonninen E, Stievenard M, Switsur R, Szczepanek M, Todaro L, Waterhouse J, Weigl M and Wimmer R, 2007. Climate signals in the European isotope network ISONET. In: Haneca K, Verheyden A, Beekmann H, Gärtner H, Helle G, Schleser G, eds. TRACE - Tree Rings in Archaeology, Climatology and Ecology, Vol. 5: Proceedings of the DENDROSYMPOSIUM 2006, April 20th – 22nd 2006, Tervuren, Belgium. Schriften des Forschungszentrums Jülich, Reihe Umwelt, 74: 138–147.
 
79.
Vaganov EA, Schulze ED, Skomarkova MV, Knohl A, Brand WA and Roscher C, 2009. Intra-annual variability of anatomical structure and δ 13 C values within tree rings of spruce and pine in alpine, temperate and boreal Europe. Oecologia 161: 729–745, DOI 10.1007/s00442-009-1421-y.
 
80.
Vitas A, 2011. Seasonal growth variations of pine, spruce and birch recorded by band dendrometers in NE Lithuania. Baltic Forestry 17(2): 197–204.
 
81.
Weigt RB, Bräunlich S, Zimmermann L, Saurer M, Grams TEE, Dietrich HP, Siegwolf RTW and Nikolova PS, 2015. Comparison of δ18O and δ13C values between tree-ring whole wood and cellulose in five species growing under two different site conditions. Rapid Communications in Mass Spectrometry 29: 2233–2244, DOI 10.1002/rcm.7388.
 
82.
Wilson AT and Grinsted MJ, 1977. 12C/13C in cellulose and lignin as palaeothermometers. Nature 265: 133–135, DOI 10.1038/265133a0.
 
83.
Wise LE, Murphy M and D’Addieco AA, 1946. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses. Paper Trade J. 122: 11–19.
 
84.
Young GHF, McCarroll D, Loader NJ and Kirchhefer AJ, 2010. A 500-year record of summer near-ground solar radiation from tree-ring stable carbon isotopes. Holocene 20: 315–324, DOI 10.1177/0959683609351902.
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top