The temporal change in the number of oxygen vacancies in quartz was investigated by ob-serving the E1’ center in the atmospheric depositions collected at two cities in Japan in the recent past. The depositions collected at Fukuoka in March show the ESR intensities being correlated with the sum of the number of the days, in the month, on which Kosa was observed while no such correlation was found in the deposition those collected at Akita but a trend of decrease with time. The present results suggest that the number of oxygen vacancies in quartz might be useful to estimate quantitatively the contribution of the dust originated from China to the atmospheric deposition in Japan.
REFERENCES(13)
1.
Feigl FJ, Fowler WB and Yip KL, 1974. Oxygen vacancy model for the E1’ center in SiO2. Solid State Communications 14(3): 225–229, DOI 10.1016/0038-1098(74)90840-0. http://dx.doi.org/10.1016/0038....
Jani MG, Bossoli RB and Halliburton LE, 1983. Further characterization of the E1’ center in crystalline SiO2. Physical Review B 27(4): 2285–2293, DOI 10.1103/PhysRevB.27.2285. http://dx.doi.org/10.1103/Phys....
Nagashima K, Tada R, Tani A, Toyoda S, Sun Y and Isozaki Y, 2007. Contribution of Aeolian dust in Japan Sea sediments estimated from ESR signal intensity and crystallinity of quartz. Geochemistry, Geophysics, Geosystems 8: Q02Q04, DOI 10.1029/2006GC001364. http://dx.doi.org/10.1029/2006....
Sugimoto N, Shimizu A, Matsui I, Uno I, Arao K and Chen Y, 2002. Movement of Kosa revealed continuous operation polarized rider network (Japanese title translated). Terrestrial Environments (Chikyu Kankyo) 7(2): 197–207 (in Japanese).
Sun Y, Tada R, Chen J, Chen H, Toyoda S, Tani A, Isozaki Y, Nagashima K, Hasegawa H and Ji J, 2007. Distinguishing the sources of Asian dust based on electron spin resonance signal intensity and crystallinity of quarts. Atmospheric Environment 41(38): 8537–8548, DOI 10.1016/j.atmosenv.2007.07.014. http://dx.doi.org/10.1016/j.at....
Toyoda S, 2005. Formation and decay of the E1’ center and its precursor in natural quartz: basics and applications. Applied Radiation and Isotopes 62(2): 325–330, DOI 10.1016/j.apradiso.2004.08.014. http://dx.doi.org/10.1016/j.ap....
Toyoda S and Hattori W, 2000. Formation and decay of the E1’ center and of its precursor. Applied Radiation and Isotopes 52(5): 1351–1356, DOI 10.1016/S0969-8043(00)00094-4. http://dx.doi.org/10.1016/S096....
Toyoda S and Ikeya M, 1991. Thermal stabilities of paramagnetic defect and impurity centers in quartz: Basis for the ESR dating of thermal history. Geochemical Journal 25: 437–445. http://dx.doi.org/10.2343/geoc....
Toyoda S and Naruse T, 2002. Eolian dust from the Asian deserts to Japanese Islands since the lost Glacial Maximum; the basis for the ESR method. Transactions, Japanese Geomorphological Union 23: 811–820.
Weeks RA and Nelson CN, 1960. Trapped electrons in irradiated quartz and silica. II. Electron Paramagnetic Resonance. Journal of the American Ceramic Society 43: 399–404. http://dx.doi.org/10.1111/j.11....
Zhu C, Wang B and Qian W, 2008. Why do dust storms decrease in northern China concurrently with the recent global warming? Geophysical Research Letters 35(18): L18702, DOI 10.1029/2008GL034886. http://dx.doi.org/10.1029/2008....
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.