RESEARCH PAPER
Luminescence dating of loess deposits from the Remagen-Schwalbenberg site, Western Germany
 
More details
Hide details
1
Institute of Geography, University of Cologne, Albertus-Magnus-Platz, D-50923 Cologne, Germany
 
2
Institute for Geography, Johannes-Gutenberg-Universität, Johann-Joachim-Becher-Weg 21, D-55099 Mainz, Germany
 
3
Department of Geography, RWTH Aachen University, Templergraben 55, D-52056 Aachen, Germany
 
 
Submission date: 2014-05-23
 
 
Acceptance date: 2015-01-08
 
 
Online publication date: 2015-03-27
 
 
Geochronometria 2015;42(1):67-77
 
KEYWORDS
ABSTRACT
This study describes the luminescence characteristics of quartz of Upper Pleistocene loess of the Middle Rhine area. The loess/palaeosol sequence of the Schwalbenberg near Remagen com-prises a multitude of interstadial soils and soil sediments that have been dedicated to the Marine Iso-tope Stage 3 (MIS 3). These weak calcaric cambisols and their derivates are underlain by loess and soil sediments of MIS 4 to MIS 5 and covered by loess sediments and intercalated gelic gleysols of MIS 2. We applied luminescence dating of quartz and feldspar of drill core samples and observed an age discrepancy within both data sets. The quartz ages were clearly younger than the feldspar ages, because of thermally unstable signal components of the quartz luminescence signal. Therefore, we re-garded the quartz samples of the lower parts of the drill core as unsuitable for luminescence dating. This underestimation did not affect the quartz samples of the upper part of the drill core which was indicated by age control that was provided by the Eltville tephra layer. Geochemical analysis based on X-ray fluorescence showed that the sediments in the upper part and the lower part of the drill core have different geogenic finger prints most likely due to changing source areas of dust and sediment allocation. We assumed that these different facies types were the reason for the luminescence behav-ior of the quartz samples.
 
REFERENCES (57)
1.
Antoine P, Rousseau DD, Zöller L, Lang A, Munaut AV, Hatté C and Fontugne M, 2001. High-resolution record of the last Interglacial-glacial cycle in the Nussloch loess-palaeosol sequences, Upper Rhine Area, Germany. Quaternary International 76-77: 211-229, DOI 10.1016/S1040-6182(00)00104-X.
 
2.
Bailey RM, 2003. Paper I: The use of measurement-time dependent single-aliquot equivalent-dose estimates from quartz in the identi-fcation of incomplete signal resetting. Radiation Measurements 37(6): 673-683, DOI 10.1016/S1350-4487(03)00078-7.
 
3.
Bailey RM, Singarayer JS, Ward S and Stokes S, 2003. Identification of partial resetting using De as a function of illumination time. Radia-tion Measurements 37(6): 511-518, DOI 10.1016/S1350-4487(03)00063-5.
 
4.
Bell WT, 1980. Alpha dose attenuation in quartz grains for thermolumi-nescence dating. Ancient TL 12: 4-8.
 
5.
Bibus E, 1980. Zur Relief-, Boden- und Sedimententwicklung am unteren Mittelrhein. (Relief, soil and sediment genesis of the Low-er Middle Rhine). Frankfurter Geowissenschaftliche Arbeiten Serie D, 1. Frankfurt: 296pp (in German).
 
6.
Bibus E, 1983. Distribution and Dimension of Young Tectonics in the Neuwied Basin and the Lower Middle Rhine. Plateau Uplift: 55-61.
 
7.
Bibus E, Frechen M, Kösel M and Rähle W, 2007. Das jungpleistozäne Lössprofil von Nussloch (SW Wand) im Aufschluss der Heidel-berger Zement AG. (The Late Pleistocene loess profile Nussloch (SW wall). Eiszeitalter und Gegenwart 56: 227-255 (in German).
 
8.
Boenigk W and Frechen M, 2006. The Pliocene and Quaternary fluvial archives of the Rhine system. Quaternary Science Reviews 25(5-6): 550-574, DOI 10.1016/j.quascirev.2005.01.018.
 
9.
Brennan BJ, 2003. Beta doses to spherical grains. Radiation Measure-ments 37(4-5): 299-303, DOI 10.1016/S1350-4487(03)00011-8.
 
10.
Bulur E, Bøtter-Jensen L and Murray AS, 2000. Optical stimulated luminescence from quartz measured using the linear modulation technique. Radiation Measurements 32(5-6): 407-411, DOI 10.1016/S1350-4487(00)00115-3.
 
11.
Buylaert JP, Murray AS, Thomsen KJ and Jain M, 2009. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44(5-6): 560-565, DOI 10.1016/j.radmeas.2009.02.007.
 
12.
Buylaert JP, Vandenberghe D, Murray AS, Huot S, De Corte F and Van den Haute P, 2007. Luminescence dating of old (>70ka) Chinese loess: a comparison of single aliquot OSL and IRSL techniques. Quaternary Geochronology 2(1-4): 9-14, DOI 10.1016/j.quageo.2006.05.028.
 
13.
Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjørnsdottir AE, Jouzel J and Bond G, 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364: 218-220, DOI 10.1038/364218a0.
 
14.
Frechen M, 1999. Upper Pleistocene loess stratigraphy in Southern Germany. Quaternary Science Reviews 18(2): 243-269, DOI 10.1016/S0277-3791(98)00058-4.
 
15.
Frechen M and Dodonov AE, 1998. Loess chronology of the Middle and Upper Pleistocene in Tadjikistan. Geologische Rundschau 87: 2-20.
 
16.
Frechen M and Schirmer W, 2011. Luminescence chronology of the Schwalbenberg II loess in the Middle Rhine valley. Quaternary Science Journal 60(1): 78-89, DOI 10.3285/eg.60.1.05.
 
17.
Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single and multi-grains of Quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 41(2): 339-364, DOI 10.1111/j.1475-4754.1999.tb00987.x.
 
18.
Grootes PM and Stuiver M, 1997. Oxygen 18/16 variability in Green-land snow and ice with 10-3 to 105-year time resolution. Journal of Geophysical Research 102(C12): 26455-26470, DOI 10.1029/97JC00880.
 
19.
Guerin G, Mercier, N and Adamiec, G, 2011. Dose-rate conversion factors: update. Ancient TL 29(1): 5-8.
 
20.
Hatté C, Antoine P, Fontugne M, Rousseau DD, Tisnerat-Laborde N and Zöller L, 1999. New chronology and organic matter δ13C paleoclimatic significance of Nussloch loess sequence (Rhine Val-ley, Germany). Quaternary International 62(1): 85-91, DOI 10.1016/S1040-6182(99)00026-9.
 
21.
Huntley DJ and Baril MR, 1997. The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. An-cient TL 15(1): 11-13.
 
22.
Jain M, Murray AS and Bøtter-Jensen L, 2003. Characterisation of blue-light stimulated luminescence components in different quartz sam-ples: implications for dose measurement. Radiation Measurements 37(4-5): 441-449, DOI 10.1016/S1350-4487(03)00052-0.
 
23.
Kabata-Pendias A, 2011. Trace elements in soils and plants. CRC Press, Boca Raton: 548pp.
 
24.
Kreutzer S, Fuchs M, Meszner S and Faust D, 2012. OSL chronology of a loess-palaeosol sequence in Saxony/Germany using quartz of different grain sizes. Quaternary Geochronology 10: 102-109, DOI 10.1016/j.quageo.2012.01.004.
 
25.
Lai ZP, 2006. Testing the use of an OSL standardised growth curve (SGC) for De determination on quartz from the Chinese Loess Plateau. Radiation Measurements 41(1): 9-16, DOI 10.1016/j.radmeas.2005.06.031.
 
26.
Li SH and Wintle AG, 1992. A global view of the stability of Lumines-cence signals from loess. Quaternary Science Reviews 11(1-2): 133-137, DOI 10.1016/0277-3791(92)90054-C.
 
27.
Muhs DR, Ager TA, Bettis EA, McGeehin J, Been JM, Beget JE, Pavich MJ, Stafford TW and Stevens DSP, 2003. Stratigraphy and palaeoclimatic significance of Late Quaternary loess-palaeosol se-quences of the Last Interglacial-Glacial cycle in central Alaska. Quaternary Science Reviews 22(18-19): 1947-1986, DOI 10.1016/S0277-3791(03)00167-7.
 
28.
Murray AS and Wintle AG, 2003. The single aliquot regenerated dose protocol: potential for improvements in reliability. Radiation Measurements 37(4-5): 377-381, DOI 10.1016/S1350-4487(03)00053-2.
 
29.
Musson FM and Wintle AG, 1994. Luminescence dating of the loess profile at Dolní Vestonice, Czech Republic. Quaternary Science Reviews 13(5-7): 411-416, DOI 10.1016/0277-3791(94)90051-5.
 
30.
Pouclet A and Juvigne E, 2009. The Eltville tephra, a late Pleistocene widespread tephra layer in Germany, Belgium and the Nether-lands; symptomatic compositions of the minerals. Geologica Bel-gica 12: 93-103.
 
31.
Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depth and long-term time variations. Radiation Measurements 23(2-3): 497-500, DOI 10.1016/1350-4487(94)90086-8.
 
32.
Roberts HM, 2006. Optical dating of coarse-silt sized quartz from loess: evaluation of equivalent dose determinations and SAR procedural checks. Radiation Measurements 41(7-8): 923-929, DOI 10.1016/j.radmeas.2006.05.021.
 
33.
Roberts HM, 2008. The development and application of luminescence dating to loess deposits: a perspective on the past, present and fu-ture. Boreas 37(4): 483-507, DOI 10.1111/j.1502-3885.2008.00057.x.
 
34.
Schirmer W, 1990. Schwalbenberg südlich Remagen. In: Schirmer, W. (Ed.), Rheingeschichte zwischen Mosel und Maas. (History of the Rhine River between Moselle River and Meuse River) Deuqua-Führer 1, 94-98 (in German).
 
35.
Schirmer W, 2000. Eine Klimakurve des Oberpleistozäns aus dem rheinischen Löss. (Climate record of the Upper Pleistocence of the loess from the Rhine River). Eiszeitalter und Gegenwart 50: 25-49.
 
36.
Schirmer W, 2012. Rhine loess at Schwalbenberg II - MIS 4 and 3. Eiszeitalter und Gegenwart (Quaternary Science Journal) 61(1): 32-47, DOI 10.3285/eg.61.1.03.
 
37.
Schirmer W, Ikinger A and Nehring F, 2012. Die terrestrischen Böden im Profil Schwalbenberg/Mittelrhein. (Terrestrial soils of the Schwalbenberg profile/Middle Rhine). Mainzer Geowissenschaft-liche Mitteilungen 40: 53-78 (in German).
 
38.
Schirmer W, 2013. Ahrgau-Subformation. In LithoLex [http://www.bgr.bund.de/lithole...; online-database]. Hannover: BGR. Last updated 13.03.2013. [cited 16.12.2014]. Record No. 1000027.
 
39.
Schönhals E, Rohdenburg H and Semmel A, 1964. Ergebnisse neuerer Untersuchungen zur Würmlößgliederung in Hessen (New investi-gations on the chronology of the Wuermian loess in Hesse). Eiszeitalter und Gegenwart 15: 199-206 (in German).
 
40.
Shen Z and Mauz B, 2009. De determination of quartz samples showing fallen De(t) plots. Radiation Measurements 44(5-6): 566-570, DOI 10.1016/j.radmeas.2009.06.003.
 
41.
Singarayer JS, 2002. Linearly modulated optically stimulated lumines-cence of sedimentary quartz: physical machanisms and implica-tions for dating. PhD thesis, University of Oxford, Oxford: 345pp.
 
42.
Singarayer JS and Bailey RM, 2003. Further investigation s of the quartz optically stimulated luminescence components using linear modulation. Radiation Measurements 37(4-5): 451-458, DOI 10.1016/S1350-4487(03)00062-3.
 
43.
SPECTRO (eds.), 2007. Analysis of Trace Elements in Geological Materials, Soils and Sludges Prepared as Pressed Pellets. SPEC-TRO XRF Report, XRF-39.
 
44.
Steffen D, Preusser F and Schlunegger F, 2009. OSL quartz age under-estimation due to unstable signal components. Quaternary Geo-chronology 4(5): 353-362, DOI 10.1016/j.quageo.2009.05.015.
 
45.
Stevens T, Armitage SJ, Lu H and Thomas DSG, 2007. Examining the potential of high sampling resolution OSL dating of Chinese loess. Quaternary Geochronology 2(1-4): 15-22, DOI 10.1016/j.quageo.2006.03.004.
 
46.
Thiel C, Buylaert JP, Murray AS and Tsukamoto S, 2011. On the ap-plicability of post-IR IRSL dating to Japanese loess. Geochrono-metria 38(4): 369-378, DOI 10.2478/s13386-011-0043-4.
 
47.
Thomsen KJ, Murray AS, Jain M and Bøtter-Jensen L, 2008. Laborato-ry fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43(9-10): 1474-1486, DOI 10.1016/j.radmeas.2008.06.002.
 
48.
Timar-Gabor A, Vandenberghe DAG, Vasiliniuc S, Panaoitu CE, Panaiotu CG, Dimofte D and Cosma C, 2011. Optical dating ofRomanian loess: A comparison between silt-sized and sand-sized quartz. Quaternary International 240: 62-70, DOI 10.1016/j.quaint.2010.10.007.
 
49.
Timar A, Vandenberghe D, Panaiotu EC, Panaiotu CG, Necula C, Cosma C and Van den Haute P, 2010. Optical dating of Romanian loess using fine-grained quartz. Quaternary Geochronology 5: 143-148, DOI 10.1016/j.quageo.2009.03.003.
 
50.
Tissoux H, Valladas H, Voinchet P, Reyss JL, Mercier N, Falguères C, Bahain JJ, Zöller L and Antoine P, 2010. OSL and ESR studies of Aeolian quartz from the Upper Pleistocene loess sequence of Nussloch (Germany). Quaternary Geochronology 5: 131-136, DOI 10.1016/j.quageo.2009.03.009.
 
51.
Tsukamoto S, Rink WJ and Watanuki T, 2003. OSL of tephric loess and volcanic quartz in Japan and an alternative procedure for estima-tion De from a fast OSL component. Radiation Measurements 37(4-5): 459-465, DOI 10.1016/S1350-4487(03)00054-4.
 
52.
Wintle AG, 1973. Anomalous fading of thermoluminescence in mineral samples. Nature 245: 143-144, DOI 10.1038/245143a0.
 
53.
Wintle AG, 1981. Thermoluminescence dating of Late Devensian loesses in southern England. Nature 289: 479-480, DOI 10.1038/289479a0.
 
54.
Zech M, Zech R, Zech W, Glaser B, Brodowski S and Amelung W, 2008. Characterisation and palaeoclimate of a loess-like perma-frost palaeosol sequence in NE Siberia. Geoderma 143(3-4): 281-295, DOI 10.1016/j.geoderma.2007.11.012.
 
55.
Zöller L and Wagner GA, 1990. Thermoluminescence datingf loess - recent developments. Quaternary International 7-8: 119-128, DOI 10.1016/1040-6182(90)90046-7.
 
56.
Zöller L, Conard NJ and Hahn J, 1991. Thermoluminescence dating of Middle Palaeolithic open air sites in the Middle Rhine Val-ley/Germany. Naturwissenschaften 78(9): 408-410.
 
57.
Zöller L, Rousseau DD, Jäger KD and Kukla G, 2004. Last interglacial, Lower and Middle Weichselian - a comparative study from the Upper Rhine and Thuringian loess area. Zeitschrift für Geomor-phologie 48(1): 1-24.
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top