RESEARCH PAPER
Multi-method luminescence investigations on quartz grains of different sizes extracted from a loess section in Southeast Romania interbedding the Campanian Ignimbrite ash layer
 
More details
Hide details
1
Faculty of Environmental Science and Engineering, Babeş-Bolyai University, Fântânele 30, 400294, Cluj Napoca, Romania
 
2
Interdisciplinary Research Institute on Bio-Nano-Science of Babeş-Bolyai University, Treboniu Laurean 42, 400271, Cluj-Napoca, Romania
 
3
Department of Human Evolution, Max Planck Institute for Evolutionary Antropology, Deutscher Platz 6, D-04103, Leipzig, Germany
 
4
Institute of Speology, Romanian Academy, 400006, Cluj Napoca, Romania
 
5
Chair of Geomorphology, Laboratory for Palaeo-and Enviro-Magnetism, University of Bayreuth, Bayreuth, Germany
 
 
Online publication date: 2013-12-20
 
 
Publication date: 2014-03-01
 
 
Geochronometria 2014;41(1):1-14
 
KEYWORDS
ABSTRACT
In this study we present luminescence investigations of four samples of loess bracketing the Campanian Ignimbrite/Y5 tephra at the Rasova-Valea cu Pietre site, on the eastern bank of the Danube River, southeastern Romania. Investigations involved SAR-OSL dating on aliquots of fine (4–11 μm) and medium-grained (63–90 μm) quartz, as well as single grain analyses on 125–180 μm quartz. Luminescence dating results coupled with glass-shard chemical fingerprinting assign the depositional age and origin of the ash layer to that of the Campanian Ignimbrite/Y5 tephra, dated elsewhere using 40Ar/39Ar to 39.28 ± 0.11 ka. Fine-grained (4–11 μm) quartz SAR-OSL analyses yielded ages of 44.4 ± 4.5 ka below the ash, and 41.4 ± 4.2 ka above the ash layer. Single grain analysis on coarse-grained quartz, however, demonstrates that coarse material from these samples exhibits low sensitivity and responds poorly to internal checks of the SAR protocol in comparison with the finer sediment. This observation highlights the need for more extensive investigations into the luminescence properties of quartz as well as into the origin of quartz contributions from different primary sources in the Lower Danube loess steppe.
REFERENCES (56)
1.
Adamiec G and Aitken M, 1998. Doserate conversion factors: update. Ancient TL 16(2): 37–50.
 
2.
Anikovich MV, Sinitsyn AA, Hoffecker JF, Holliday VT, Popov VV, Lisitsyn SN, Forman SL, Levkovskaya GM, Pospelova GA, Kuz’mina IE, Burova ND, Goldberg P, Macphail RI, Giaccio B and Praslov ND, 2007. Early Upper Paleolithic in Eastern Europe and implications for the dispersal of modern humans. Science 315: 223–315, DOI 10.1126/science.1133376. http://dx.doi.org/10.1126/scie....
 
3.
Bailey RM, 2000. The slow component of quartz optically stimulated luminescence. Radiation Measurements 32(3): 233–246, DOI 10.1016/S1350-4487(99)00285-1. http://dx.doi.org/10.1016/S135....
 
4.
Bellia S, Brai M, Hauser S, Puccio P and Rizzo S, 1997. Natural radioactivity in a volcanic island: Ustica, Southern Italy. Applied Radiation and Isotopes 48(2): 287–293, DOI 10.1016/S0969-8043(96)00150-9. http://dx.doi.org/10.1016/S096....
 
5.
Bøtter-Jensen L, Bulur E, Duller GAT and Murray AS, 2000. Advances in luminescence instrument systems. Radiation Measurements 32(5–6): 523–528, DOI 10.1016/S1350-4487(00)00039-1. http://dx.doi.org/10.1016/S135....
 
6.
Brai M, Hauser S, Bellia S, Puccio P and Rizzo S, 1995. Natural g-radiation of rocks and soils from Vulcano (Aeolian islands, Mediterranean Sea). Nuclear Geophysics 9: 121–127.
 
7.
Brai M, Basile S, Bellia S, Hauser S, Puccio P, Rizzo S, Bartolotta A and Licciardello A, 2002. Environmental radioactivity at Stromboli (Aeolian Islands). Applied Radiation and Isotopes 57(1): 99–107, DOI 10.1016/S0969-8043(02)00074-X. http://dx.doi.org/10.1016/S096....
 
8.
Civetta L, Gasparini P and Adams AS, 1970. Geochronology and geochemical trends of volcanic rocks from Campania, southern Italy. Ecolgae Geologicae Helvetie 63: 57–68.
 
9.
Civetta L and Gasparini P, 1973. U and Th distributions in recent volcanics from southern Italy: magmatological and geophysical implications. Rivista Italiana di Geofisica XXII (3/4): 127–139.
 
10.
Civetta L, Orsi G, Pappalardo L, Fisher RV, Heiken G and Ort M, 1997. Geochemical zoning, mingling, eruptive dynamics and depositional processes e the Campanian Ignimbrite, Campi Flegrei caldera, Italy. Journal of Volcanology and Geothermal Research 75(3–4): 183–219, DOI 10.1016/S0377-0273(96)00027-3. http://dx.doi.org/10.1016/S037....
 
11.
Constantin D, Timar-Gabor A, Veres D, Begy R and Cosma C, 2012. SAR-OSL dating of different grain-sized quartz from a sedimentary section in southern Romania interbedding the Campanian Ignimbrite/Y5 ash layer. Quaternary Geochronology 10: 81–86, DOI 10.1016/j.quageo.2012.01.012. http://dx.doi.org/10.1016/j.qu....
 
12.
Constantin D, Begy R, Vasiliniuc S, Panaiotu C, Necula C, Codrea V and Timar-Gabor A, in press. High-resolution OSL dating of the Costinesti section (Dobrogea, SE Romania) using fine and coarse quartz. Quaternary International, DOI 10.1016/j.quaint.2013.06.016.
 
13.
Cunningham AC and Wallinga J, 2010. Selection of integration time-intervals for quartz OSL decay curves. Quaternary Geochronology 5(6): 657–666, DOI 10.1016/j.quageo.2010.08.004. http://dx.doi.org/10.1016/j.qu....
 
14.
De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ and Belkin HE, 2001. New constraints on the pyroclastic eruptive history of the Campanian volcanic plain (Italy). Mineralogy and Petrology, 73(1–3): 47–65, DOI 10.1007/s007100170010. http://dx.doi.org/10.1007/s007....
 
15.
Duller GAT, 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37(2): 161–165, DOI 10.1016/S1350-4487(02)00170-1. http://dx.doi.org/10.1016/S135....
 
16.
Fedele FG, Giaccio B, Isaia R and Orsi G, 2003. The Campanian Ignimbrite Eruption, Heinrich Event 4, and Palaeolithic Change in Europe: a High-Resolution Investigation. Geophysical Monograph Volcanism and the Earth’s Atmosphere. American Geophysical Union 139: 301–325, DOI 10.1029/139GM20. http://dx.doi.org/10.1029/139G....
 
17.
Fitzsimmons KE, 2011. An Assessment of the luminescence sensitivity of Australian quartz with respect to sediment history. Geochrono-metria 38(3): 199–208, DOI 10.2478/s13386-011-0030-9. http://dx.doi.org/10.2478/s133....
 
18.
Fitzsimmons KE, Rhodes EJ and Barrows TT, 2010. OSL dating of southeast Australian quartz: A preliminary assessment of luminescence characteristics and behavior. Quaternary Geochronology 5(2–3): 91–95, DOI 10.1016/j.quageo.2009.02.009. http://dx.doi.org/10.1016/j.qu....
 
19.
Fitzsimmons KE and Hambach U, in press. Loess accumulation during the last glacial maximum: Evidence from Urluia, southeastern Romania. Quaternary International, DOI 10.1016/j.quaint.2013.08.005.
 
20.
Fitzsimmons KE, Hambach U, Veres D and Iovita R, 2013. The Campanian Ignimbrite eruption: new data on volcanic ash dispersal and its potential impact on human evolution. PLOS ONE 8(6): e65839, DOI 10.1371/journal.pone.0065839. http://dx.doi.org/10.1371/jour....
 
21.
Frechen M, Schweitzer U and Zander A, 1996. Improvements in sample preparation for the fine grain technique. Ancient TL 14: 15–17.
 
22.
Hippolyte JC, 2002. Geodynamics of Dobrogea (Romania): new constraints on the evolution of the Tornquist-Teisseyre Line, the Black Sea and the Carpathians. Tectonophysics 357(1–4): 33–53, DOI 10.1016/S0040-1951(02)00361-X. http://dx.doi.org/10.1016/S004....
 
23.
Jacobs Z, Duller GAT and Wintle AG, 2006. Interpretation of single grain De distributions and calculation of De. Radiation Measurements 41(3): 264–277, DOI 10.1016/j.radmeas.2005.07.027. http://dx.doi.org/10.1016/j.ra....
 
24.
Jacobs Z and RG Roberts, 2007. Advances in optically stimulated luminescence dating of individual grains of quartz from archeological deposits. Evolutionary Anthropology: Issues, News, and Reviews 16(6): 210–223, DOI 10.1002/evan.20150. http://dx.doi.org/10.1002/evan....
 
25.
Jipa DC, in press. The Conceptual Sedimentary Model of the Lower Danube Loess Basin: Sedimentogenetic Implications. Quaternary International, DOI 10.1016/j.quaint.2013.06.008.
 
26.
Lang A, Lindauer S, Kuhn R and Wagner GA, 1996. Procedures used for optically and infrared stimulated luminescence dating of sediments in Heidelberg. Ancient TL 14(3): 7–11.
 
27.
Li S-H and Wintle AG, 1992. Luminescence sensitivity change due to bleaching of sediments. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 20(4): 567–573, DOI 10.1016/1359-0189(92)90006-H. http://dx.doi.org/10.1016/1359....
 
28.
Li S-H, Chen YY, Li B, Sun JM and Yang LR, 2007. OSL dating of sediments from deserts in northern China. Quaternary Geochronology 2(1–4): 23–28, DOI 10.1016/j.quageo.2006.05.034. http://dx.doi.org/10.1016/j.qu....
 
29.
Lowe J, Barton N, Blockley S, Ramsey CB, Cullen VL, Davies W, Gamble C, Grant K, Hardiman M, Housley R, Lane CS, Lee S, Lewis M, MacLeod A, Menzies M, Müller W, Pollard M, Price C, Roberts AP, Rohling EJ, Satow C, Smith VC, Stringer CB, Tomlinson EL, White D, Albert P, Arienzo I, Barker G, Borić D, Ca-randente A, Civetta L, Ferrier C, Guadelli J-L, Karkanas P, Koumouzelis M, Müller UC, Orsi G, Pross J, Rosi M Shalamanov-Korobar L, Sirakov N and Tzedakis PC, 2012. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards. Proceedings of the National Academy of Sciences of the United States of America 109(34): 13532–13537, DOI 10.1073/pnas.1204579109. http://dx.doi.org/10.1073/pnas....
 
30.
Marković SB, Kostić NS, Oches EA, 2004. Paleosols in the Ruma loess section (Vojvodina, Serbia). Revista Mexicana de Ciencias Geologicas 21: 79–87.
 
31.
Mejdahl V, 1979. Thermoluminescence dating: beta-dose attenuation in quartz grains. Archaeometry 21(1): 61–72, DOI 10.1111/j.1475-4754.1979.tb00241.x. http://dx.doi.org/10.1111/j.14....
 
32.
Munteanu MT, Munteanu E, Stiuca E, Macaleti R and Dumitrascu G, 2008. Some aspects concerning the Quaternary deposits in south Dobrogea. Acta Palaeontologica Romaniae 6: 229–236.
 
33.
Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32(1): 57–73, DOI 10.1016/S1350-4487(99)00253-X. http://dx.doi.org/10.1016/S135....
 
34.
Murray AS and Wintle AG, 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37(4–5): 377–381, DOI 10.1016/S1350-4487(03)00053-2. http://dx.doi.org/10.1016/S135....
 
35.
Pietsch TJ, Olley JM and Nanson GC, 2008. Fluvial transport as a natural luminescence sensitiser of quartz. Quaternary Geochro-nology 3(4): 365–376, DOI 10.1016/j.quageo.2007.12.005. http://dx.doi.org/10.1016/j.qu....
 
36.
Pop G, Andreescu I, Avram E, Draganescu A, Ghenea C, Ghenea A and Mihailescu N, 1991. Harta geologicǎa României scara 1:50.000, Foaia Aliman (Geological map of Romania at scale 1: 50 000, Aliman Section). Institutul Geologic al Romaniei, Bucuresti.
 
37.
Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long term variations. Radiation Measurements 23(2–3): 497–500, DOI 10.1016/1350-4487(94)90086-8. http://dx.doi.org/10.1016/1350....
 
38.
Preusser F, Chithambo ML, Götte, Martini M, Ramseyer K, Sendezera EJ, Susino GJ and Wintle AG, 2009. Quartz as a natural luminescence dosimeter. Earth-Science Reviews 97(1–4): 184–214, DOI 10.1016/j.earscirev.2009.09.006. http://dx.doi.org/10.1016/j.ea....
 
39.
Preusser F, Ramseyer K and Schlüchter C, 2006. Characterisation of low OSL intensity quartz from the New Zealand Alps. Radiation Measurements 41(7–8): 871–877, DOI 10.1016/j.radmeas.2006.04.019. http://dx.doi.org/10.1016/j.ra....
 
40.
Pyle DM, Ricketts GD, Margari V, van Andel TH, Sinitsyn AA, Praslov ND and Lisitsyn S, 2006. Wide dispersal and deposition of distal tephra during the Pleistocene ‘Campanian Ignimbrite/Y5’ eruption, Italy. Quaternary Science Reviews 25(21–22): 2713–2728, DOI 10.1016/j.quascirev.2006.06.008. http://dx.doi.org/10.1016/j.qu....
 
41.
Rodnight H, 2008. How many equivalent dose values are needed to obtain a reproducible distribution? Ancient TL 26(1): 3–10.
 
42.
Signorelli S, Vaggelli G, Francalanci L and Rosi M, 1999. Origin of magmas feeding the Plinian phase of the Campanian Ignimbrite eruption, Phlegrean Fields (Italy): constraints based on matrix-glass and glass-inclusion compositions. Journal of Volcanology and Geothermal Research 91(2–4): 199–220, DOI 10.1016/S0377-0273(99)00036-0. http://dx.doi.org/10.1016/S037....
 
43.
Smalley IJ and Leach JA, 1978. The origin and distribution of the loess in the Danube basin and associated regions of East-Central Europe — A review. Sedimentary Geology 21(1): 1–26, DOI 10.1016/0037-0738(78)90031-3. http://dx.doi.org/10.1016/0037....
 
44.
Thomsen KJ, Bøtter-Jensen L, Denby P, Moska P and Murray AS, 2006. Developments in luminescence measurements techniques. Radiation Measurements 41(7—8): 768–773, DOI 10.1016/j.radmeas.2006.06.010. http://dx.doi.org/10.1016/j.ra....
 
45.
Thunnel R, Federman A, Sparks S and Williams D, 1978. The origin and volcanological significance of the Y-5 ash layer in the Mediterranean. Quaternary Research 12(2): 241–253, DOI 10.1016/0033-5894(79)90060-7. http://dx.doi.org/10.1016/0033....
 
46.
Timar A, Vandenberghe D, Panaiotu EC, Panaiotu CG, Necula C, Cosma C and Van den haute P, 2010. Optical dating of Romanian loess using fine-grained quartz. Quaternary Geochronology 5(2–3): 143–148, DOI 10.1016/j.quageo.2009.03.003. http://dx.doi.org/10.1016/j.qu....
 
47.
Timar-Gabor A, Vandenberghe DAG, Vasiliniuc S, Panaoitu CE, Panaiotu CG, Dimofte D and Cosma C, 2011. Optical dating of Romanian loess a comparison between silt-sized and sand-sized quartz. Quaternary International 240(1-2): 62–70, DOI 10.1016/j.quaint.2010.10.007. http://dx.doi.org/10.1016/j.qu....
 
48.
Timar-Gabor A, Vasiliniuc S, Vandenberghe DAG, Cosma C and Wintle AG, 2012. Investigations into the reliability of SAR-OSL equivalent doses obtained for quartz samples displaying dose response curves with more than one component. Radiation Measurements 47(9): 740–745, DOI 10.1016/j.radmeas.2011.12.001. http://dx.doi.org/10.1016/j.ra....
 
49.
Timar-Gabor A and Wintle AG, 2013. On natural and laboratory generated dose response curves for quartz of different grain sizes from Romanian loess. Quaternary Geochronology 18: 34–40, DOI 10.1016/j.quageo.2013.08.001. http://dx.doi.org/10.1016/j.qu....
 
50.
Ton-That T, Singer B and Paterne M, 2001. 40Ar/39Ar dating of latest Pleistocene (41 ka) marine tephra in the Mediterranean Sea: implications for global climate records. Earth and Planetary Science Letters 184(3–4): 645–658, DOI 10.1016/S0012-821X(00)00358-7. http://dx.doi.org/10.1016/S001....
 
51.
Vandenberghe DAG, De Corte F, Buylaert J-P, Kučera J and Van den haute P, 2008. On the internal radioactivity in quartz. Radiation Measurements 43(2–6): 771–775, DOI 10.1016/j.radmeas.2008.01.016. http://dx.doi.org/10.1016/j.ra....
 
52.
Vasiliniuc S, Timar-Gabor A, Vandenberghe DAG, Panaiotu CG, Begy RCs and Cosma C, 2011. A high resolution optical dating study of the Mostiştea loess-palaeosol sequence (SE Romania) using sand-sized quartz. Geochronometria 38(1): 34–41, DOI 10.2478/s13386-011-0007-8. http://dx.doi.org/10.2478/s133....
 
53.
Veres D, Lane CS, Timar-Gabor A, Hambach U, Constantin D, Szakács A, Fülling A and Onac BP, 2013. The Campanian Ignimbrite/Y5 tephra layer — A regional stratigraphic marker for isotope Stage 3 deposits in the Lower Danube region, Romania. Quaternary Inter-national 293: 22–33, DOI 10.1016/j.quaint.2012.02.042. http://dx.doi.org/10.1016/j.qu....
 
54.
Westaway KE, 2009. The red, white and blue of quartz luminescence: A comparison of De values derived for sediments from Australia and Indonesia using thermoluminescence and optically stimulated luminescence emissions. Radiation Measurements 44(5–6): 462–466, DOI 10.1016/j.radmeas.2009.06.001. http://dx.doi.org/10.1016/j.ra....
 
55.
Wintle AG and Murray AS, 1999. Luminescence sensitivity changes in quartz. Radiation Measurements 30(1): 107–118, DOI 10.1016/S1350-4487(98)00096-1. http://dx.doi.org/10.1016/S135....
 
56.
Wintle AG and Murray AS, 2000. Quartz OSL: Effects of thermal treatment and their relevance to laboratory dating procedures. Radiation Measurements 32(5–6): 387–400, DOI 10.1016/S1350-4487(00)00057-3. http://dx.doi.org/10.1016/S135....
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top