RESEARCH PAPER
Overcoming Environmental Dose Rate Changes in Luminescence Dating of Waterlain Deposits
Bo Li 1
,
 
,
 
 
 
 
More details
Hide details
1
Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
 
2
Institute of Geography and Earth Sciences, University of Wales, Aberystwyth SY23 3DB, United Kingdom
 
 
Online publication date: 2008-03-28
 
 
Publication date: 2008-01-01
 
 
Geochronometria 2008;30:33-40
 
KEYWORDS
ABSTRACT
This study investigates lacustrine and fluvial sediments on the Sala Us River in the Mu Us Desert in central north China. Significant changes in environmental dose rate in part of the section could be shown to have occurred from measurements of the present day radioactivity and by the age reversal for some samples that had been dated by optically stimulated luminescence (OSL) measurements on quartz. These changes in dose rate can be attributed to recent uptake of radioactive elements found in the sediments; this resulted in significant underestimation of the OSL ages. In this study, the new isochron method using K-feldspar grains has been applied to overcome the effects of changes in dose rate. Calculations are used to show that changes in the environmental dose rate factors, i.e. K, U, Th, water content and cosmic ray flux, and disequilibrium in the U and Th decay chains, e.g. radon escape, have a negligible effect on the isochron age. After applying the new isochron method, the effects of changes in dose rate caused by recent uptake of radioactive elements and changes in past water content were effectively overcome and true ages are obtained; this was verified by repeating the luminescence isochron measurements on samples of overlying and underlying sediments.
 
REFERENCES (38)
1.
Wintle AG, 1997. Luminescence dating: Laboratory procedures and protocols. Radiation Measurements 27(5-6): 769-817, DOI 10.1016/S1350-4487(97)00220-5.10.1016/S1350-4487(97)00220-5.
 
2.
Zhang J-F, Li S-H and Tso MYW, 2001. Improvement of the equivalent dose determination using aliquots of potassium feldspars. Radiation Measurements 33(1): 65-71, DOI 10.1016/S1350-4487(00)00132-3.10.1016/S1350-4487(00)00132-3.
 
3.
Zhao H and Li S-H, 2002. Luminescence isochron dating: A new approach using different grain sizes. Radiation Protection Dosimetry 101(1-4): 333-338.10.1093/oxfordjournals.rpd.a005996.
 
4.
Zhao H and Li S-H, 2005. Internal dose rate to K-feldspar grains from radioactive elements other than potassium. Radiation Measurements 40(1): 84-93, DOI 10.1016/j.radmeas.2004.11.00410.1016/j.radmeas.2004.11.004.
 
5.
Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38(7): 1093-1106, DOI 10.1139/cjes-38-7-1093.10.1139/e01-013.
 
6.
Huot S and Lamothe M, 2003. Variability of infrared stimulated luminescence properties from fractured feldspar grains. Radiation Measurements 37(4-5): 499-503, DOI 10.1016/S1350-4487(03)00014-3.10.1016/S1350-4487(03)00014-3.
 
7.
Li S-H, 1994. Optical dating: insufficiently bleached sediments. Radiation Measurements 23(2-3), 563-567, DOI 10.1016/1350-4487(94)90100-7.10.1016/1350-4487(94)90100-7.
 
8.
Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32(1): 57-73, DOI 10.1016/S1350-4487(99)00253-X.10.1016/S1350-4487(99)00253-X.
 
9.
Olley JM, Murray A and Roberts RG, 1996. The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments. Quaternary Science Reviews 15(7): 751-760, DOI 10.1016/0277-3791(96)00026-1.10.1016/0277-3791(96)00026-1.
 
10.
Adamiec G and Aitken MJ, 1998. Dose-rate conversion factors: update. Ancient TL 16: 37-50.
 
11.
Aitken MJ, 1985. Thermoluminescence dating. London, Academic press: 267pp.
 
12.
Aitken MJ, 1998. An Introduction to Optical Dating. Oxford, Oxford University Press: 359pp.
 
13.
Auclair M, Lamothe M and Huot S, 2003. Measurement of anomalous fading for feldspar IRSL using SAR. Radiation Measurements 37(4-5): 487-492, DOI 10.1016/S1350-4487(03)00018-0.10.1016/S1350-4487(03)00018-0.
 
14.
Blair MW, Yukihara EG and McKeever SWS, 2005. Experiences with single-aliquot OSL procedures using coarse-grain feldspars. Radiation Measurements 39(4): 361-374, DOI 10.1016/j.radmeas.2004.05.008.10.1016/j.radmeas.2004.05.008.
 
15.
Brennan BJ, 2003. Beta doses to spherical grains. Radiation Measurements 37(4-5): 299-303, DOI 10.1016/S1350-4487(03)00011-8.10.1016/S1350-4487(03)00011-8.
 
16.
Bruno J, Depablo J, Duro L and Figuerola E, 1995. Experimental-Study and Modeling of the U(Vi)-Fe(Oh)(3) Surface Precipitation Coprecipitation Equilibria. Geochimica Et Cosmochimica Acta 59(20): 4113-4123, DOI 10.1016/0016-7037(95)00243-S.10.1016/0016-7037(95)00243-S.
 
17.
Duller GAT, 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37(2): 161-165, DOI 10.1016/S1350-4487(02)00170-1.10.1016/S1350-4487(02)00170-1.
 
18.
Eriksson MG, Olley JM, Kilham DR, Pietsch T and Wasson RJ, 2006. Aggradation and incision since the very late Pleistoncene in the Naas River, south-eastern Australia. Geomorphology 81(1-2), 66-88, DOI 10.1016/j.geomorph.2006.04.001.10.1016/j.geomorph.2006.04.001.
 
19.
Fain J, Soumana S, Montret M, Miallier D, Pilleyre T and Sanzelle S, 1999. Luminescence and ESR dating Beta-dose attenuation for various grain shapes calculated by a Monte-Carlo method. Quaternary Science Reviews 18(2): 231-234, DOI 10.1016/S0277-3791(98)00056-0.10.1016/S0277-3791(98)00056-0.
 
20.
Huntley DJ, 2002. Comment on "Luminescence Dating of Coastal Sands: Overcoming Changes in Environmental Dose Rate" by J. C. Vogel, A. G. Wintle and S. M. Woodborne. Journal of Archaeological Science 29(5): 559-560, DOI 10.1006/jasc.2001.0721.10.1006/jasc.2001.0721.
 
21.
Huntley DJ and Baril MR, 1997. The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. Ancient TL 15: 11-13.
 
22.
Huntley DJ and Hancock RGV, 2001. The Rb contents of the K-feldspars being measured in optical dating. Ancient TL 15: 43-46.
 
23.
Li S-H, 2001. Identification of well-bleached grains in the optical dating of quartz. Quaternary Science Reviews 20(12): 1365-1370, DOI 10.1016/S0277-3791(00)00156-6.10.1016/S0277-3791(00)00156-6.
 
24.
Li S-H, Sun JM and Zhao H, 2002. Optical dating of dune sands in the northeastern deserts of China. Palaeogeography Palaeoclimatology Palaeoecology 181(4): 419-429, DOI 10.1016/S0031-0182(01)00443-6.10.1016/S0031-0182(01)00443-6.
 
25.
Li B, Li S-H, Wintle AG and Zhao H, 2007. Isochron measurements of naturally irradiated K-feldspar grains. Radiation Measurements 42(8): 1315-1327, DOI 10.1016/j.radmeas.2007.09.008.10.1016/j.radmeas.2007.09.008.
 
26.
Li B, Li S-H, Wintle AG and Zhao H, Isochron dating of sediments using K-feldspars. Journal of Geophysical Research (submitted).
 
27.
Marley NA, Gaffney JS, Orlandini KA and Cunningham MM, 1993. Evidence for Radionuclide Transport and Mobilization in a Shallow, Sandy Aquifer. Environmental Science & Technology 27(12): 2456-2461, DOI 10.1021/es00048a022.10.1021/es00048a022.
 
28.
McKerrell HV and Mejdahl V, 1981. Progress and problems with automated TL dating, Proceedings of the 16th International Symposium of Archaeometry, National Museum of Antiquities of Scotland, Edingurgh: pp. 36.
 
29.
Mejdahl V, 1979. Thermoluminescence Dating: Beta-Dose Attenuation in Quartz Grains. Archaeometry 21(1): 61-72, DOI 10.1111/j.1475-4754.1979.tb00241.x.10.1111/j.1475-4754.1979.tb00241.x.
 
30.
Mejdahl V, 1983. Feldspar inclusion dating of ceramics and burnt stones. PACT 9: 351-364.
 
31.
Mercier N, Valladas H, Joron JL, Schiegl S, Bar-Yosef O and Weiner S, 1995. Thermoluminescence Dating and the Problem of Geochemical Evolution of Sediments - a Case-Study - the Mousterian Levels at Hayonim. Israel Journal of Chemistry 35(2): 137-141.10.1002/ijch.199500021.
 
32.
Munyikwa K, 2000. Cosmic ray contribution to environmental dose rates with varying overburden thickness. Ancient TL 18: 27-34.
 
33.
Olley JM, Roberts RG and Murray AS, 1997. Disequilibria in the uranium decay series in sedimentary deposits at Allen's Cave, Nullarbor Plain, Australia: Implications for dose rate determinations. Radiation Measurements 27(2): 433-443, DOI 10.1016/S1350-4487(96)00114-X.10.1016/S1350-4487(96)00114-X.
 
34.
Prescott JR and Hutton JT, 1994. Cosmic-Ray Contributions to Dose-Rates for Luminescence and Esr Dating - Large Depths and Long-Term Time Variations. Radiation Measurements 23(2-3): 497-500, DOI 10.1016/1350-4487(94)90086-8.10.1016/1350-4487(94)90086-8.
 
35.
Sun JM, 2000. Origin of eolian sand mobilization during the past 2300 years in the Mu Us Desert, China. Quaternary Research 53(1): 78-88, DOI 10.1006/qres.1999.2105.10.1006/qres.1999.2105.
 
36.
Vogel JC, Wintle AG and Woodborne SM, 1999. FOCUS: Luminescence dating of coastal sands: Overcoming changes in environmental dose rate. Journal of Archaeological Science 26(7): 729-733, DOI 10.1006/jasc.1999.0450.10.1006/jasc.1999.0450.
 
37.
Wallinga J, Murray AS and Wintle AG, 2000. The single-aliquot regenerative-dose (SAR) protocol applied to coarse-grain feldspar. Radiation Measurements 32(5-6): 529-533, DOI 10.1016/S1350-4487(00)00091-3.10.1016/S1350-4487(00)00091-3.
 
38.
Wintle AG, 1973. Anomalous Fading of Thermoluminescence in Mineral Samples. Nature 245(5421): 143-144, DOI 10.1038/245143a0.10.1038/245143a0.
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top