RESEARCH PAPER
Radiocarbon method in monitoring of fossil fuel emission
 
More details
Hide details
 
Online publication date: 2011-09-22
 
 
Publication date: 2011-12-01
 
 
Geochronometria 2011;38(4):314-324
 
KEYWORDS
ABSTRACT
The traditional radiocarbon method widely used in archaeology and geology for chronological purposes can also be used in environmental studies. Combustion of fossil fuels like coal, natural gas, petroleum, etc., in industrial and/or heavily urbanized areas, has increased the concentration of carbon dioxide in the atmosphere. The addition of fossil carbon caused changes of carbon isotopic composition, in particular, a definite decrease of 14C concentration in atmospheric CO2 and other carbon reservoirs (ocean and terrestrial biosphere), known as the Suess effect. Tree rings, leaves, as well as other annual growing plants reflected the changes of radiocarbon concentration in the atmosphere due to processes of photosynthesis and assimilation of carbon from the air. By measuring radiocarbon concentration directly in atmospheric CO2 samples and/or biospheric material growing in industrial and/or highly urbanized areas where high emission of dead carbon is expected, it is possible to estimate the total emission of dead CO2. Based on equations of mass balance for CO2 concentration, stable isotopic composition of carbon and radiocarbon concentration it is possible to calculate CO2 con-centration associated with fossil fuel emission into the atmosphere. The procedure use differences between the radiocarbon concentration and stable isotope composition of carbon observed in clean areas and industrial or/and highly urbanized areas.
REFERENCES (47)
1.
[AEMet] Agencia Estatal de Meterología. Online on www.aemet.es/es/portada. Accessed 2010-11-15.
 
2.
Craig H, 1957. Isotope standards for carbon and oxygen and correction factors for mass-spectrometric analysis scintillation counting. Nukcleonika 20(11–12): 1053–66.
 
3.
Etheridge DM, Steele LP, Langenfeld RL, Franccy RJ, Barnola J-M and Morgan VI, 1996. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice firn. Journal of Geophysical Research 101(D2): 4115–4128, DOI 10.1029/95JD03410. http://dx.doi.org/10.1029/95JD....
 
4.
GLOBALVIEW-CO2, 2008. Cooperative Atmospheric Data Integration Project — Carbon Dioxide. CD-ROM, NOAA CMDL, Boulder, Colorado (Also available on Internet via www.esrl.noaa.gov/gmd/ccgg/globalview/index.html.
 
5.
Green JW, 1963. Methods of Carbohydrate Chemistry. In: Whistler RL, ed., Methods in Carbohydrate. Chemistry, Acad.emic Press, New York: 9–21.
 
6.
Gupta SK and Polach HA, 1985. Radiocarbon Dating Practices at ANU. Handbook, Radiocarbon Dating laboratory, Research School of Pacific Studies, ANU, Canberra: 173 pp.
 
7.
Hua Q and Barbetti M, 2004. Review of Tropospheric Bomb 14C Data for Carbon Cycle Modeling and age Calibration Purposes. Radiocarbon 46(3): 1273–1298.
 
8.
[JMA] Japan Meteorological Agency. Online on http://www.jma.go.jp. Accessed 2010-10-12.
 
9.
Keeling CD and Whorf TP, 1994. Atmospheric CO2 records from sites in the SIO network. [in] Trends’ 93: A compendium of Data on Global Change, edited by T. Boden et al., 16–28, Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. (http://cdiac.esd.ornl.gov).
 
10.
Keeling CD, Bocastow RB, Carter AF, Piper SC, Whorf TP, Heimann M, Mook WG and Roeloffzen H, 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data. In: Petersen DH, ed., Aspects of Climate Variability in the Pacific and Western Americas. Geophys. Monographs 55: 165–236.
 
11.
Kitagawa H, Masuzawa T, Nakamura T and Matsumoto E, 1993. A batch preparation method for graphite targets with low level background for AMS 14C measurements. Radiocarbon 35(2): 295–300.
 
12.
Krajcar-Bronić I, Horvatinčić N and Obelić B, 1998. Two decades of environmental isotope records in Croatia, Reconstruction of the past and prediction of future level. Radiocarbon 40(1): 399–416.
 
13.
Kuc T and Zimnoch M, 1998. Changes of the CO2 sources and sink in polluted urban area (southern Poland) over last decade, deriving from the carbon isotope composition. Radiocarbon 40(1): 417–423.
 
14.
Kuc T, Rozanski K, Zimnoch M, Necki JM and Korus A, 2003. Anthropogenic emissions of CO2 and CH4 in an urban environment. Applied Energy 75(3–4): 193–203, DOI 10.1016/S0306-2619(03)00032-1. http://dx.doi.org/10.1016/S030....
 
15.
Levin I and Hesshaimer V, 2000. Radiocarbon — a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1): 69–80.
 
16.
Levin I and Kromer B, 1997. Twenty years of high-precision atmospheric 14CO2 observation at Schauinsland station, Germany. Radiocarbon 39(2): 205–218.
 
17.
Levin I and Kromer B, 2004. The tropospheric 14CO2 level in midlatitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46(3): 1261–1272.
 
18.
Levin I, Kromer B, Schmidt M and Sartorius H, 2003. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observation. Geopysical Research Letters 30(23): 2194–2198, DOI 10.1029/2003GL018477. http://dx.doi.org/10.1029/2003....
 
19.
Levin I, Bösinger R, Bonani G, Francey RJ, Kromer B, Mnich KO, Suter M, Trivett NBA and Wölfli W, 1992. Radiocarbon in atmospheric carbon dioxide and methane: Global distribution and trends. In: Taylor RE, Long A and Kra RS, eds., Radiocarbon After Four Decades: An Interdisciplinary Perspective. New York, Springer-Verlag: 503–518.
 
20.
Levin I, Kromer B, Schoch-Fischer H, Bruns M, Münnich M, Berdau D, Vogel JC and Münnich KO, 1994. 14CO2 records from two sites in central Europe. In: Boden TA. Kaiser DP, Sepanski RJ and Stoss FW, eds., Trends 93—A Compendium of Data on Global Change and online updates. Oak Ridge, Tennessee, USA: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory: 203–222. http://cdiac.esd.ornl.gov/tren....
 
21.
Levin I, Kromer B and Francey RJ, 1999. Continuous measurements of 14C in atmospheric CO2 at Cape Grim, 1995–1996. In: Grass JL, Derek N, Tindale NW and Dick AL, eds., Baseline Atmospheric Program Australia1996. Melbourne: Bureau of Meteorology and CSIRO Atmospheric Research: 89–90.
 
22.
Linacre E and Geerts B, 1997. Climates and Weather Explained. London, Routledge: 653 pp.
 
23.
Marland G, Boden TA, Andres RJ, Brenkert AL and Johnston CA, 1999. Global, regional, and national fossil fuel CO2 emission. In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. (http://cdiac.esd.ornl.gov).
 
24.
McNeely R, 1994. Long-term environmental monitoring of 14C levels in the Ottava region. Environmental International 20(5): 675–679, DOI 10.1016/0160-4120(94)90013-2. http://dx.doi.org/10.1016/0160....
 
25.
Meijer HAJ, van der Plicht J, Gislefoss JS and Nydal R, 1995. Comparing long-term atmospheric 14C and 3H records near Groningen, the Netherlands with Fruholmen, Norway and Izaña, Canary Islands 14C stations. Radiocarbon 37(1): 39–50.
 
26.
Mook WG and van der Plicht J, 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3): 227–240.
 
27.
Muraki Y, Masuda K, Arslanov KhA, Toyoizumi H, Kato M, Naruse Y and Nishiyama T, 2001. Measurement of radiocarbon content in leaves from some Japanese sites. Radiocarbon 42(2B): 695–701.
 
28.
Muraki Y, Kocharov G, Nishiyama T, Naruse Y, Murata T, Masuda K and Arslanov KhA, 1998. The new Nagoya Radiocarbon Laboratory. Radiocarbon 40(1): 177–182.
 
29.
Nakamura T, Niu E, Oda H, Ikeda A, Minami M, Takahashi H, Adachi M, Pals L, Gottdang A and Suya N, 2000. The HVEE Tandetron AMS system at Nagoya University. Nuclear Instruments and Methods in Physics Research B 172(1–4): 52–57, DOI 10.1016/S0168-583X(00)00398-0. http://dx.doi.org/10.1016/S016....
 
30.
Nydal R, 1968. Further investigation on the transfer of radiocarbon in nature. Journal of Geophysical Research 73(12): 3617–3635, DOI 10.1029/JB073i012p03617. http://dx.doi.org/10.1029/JB07....
 
31.
Nydal R and Lövseth K, 1996. Carbon-14 measurement in atmospheric CO 2from Northern and Southern Hemisphere sites, 1962–1993. Oak Ridge, Tennessee, USA: Carbon Dioxide Information Analysis Center-World Data Center-A for Atmospheric Trace Gases (http://cdiac.esd.ornl.gov).
 
32.
Oeschger H, Siegenthaler U, Schotterer U and Gugelmann A, 1975. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27(2): 168–192. http://dx.doi.org/10.1111/j.21....
 
33.
Pazdur A, Korput S, Fogtman M, Szczepanek M, Hałas S, Krąpiec E and Szychowska-Krąpiec E, 2005. Carbon-13 in α-cellulose of oak latewood (Jędrzejów, southern Poland) during the Maunder minimum. Geological Quarterly 49(2): 165–72.
 
34.
Pazdur A, Nakamura T, Pawełczyk S, Pawlyta J, Piotrowska N, Rakowski AZ, Sensuła B and Szczepanek M, 2007. Carbon isotopes in tree rings: Climate and Human activities in the last 400 years. Radiocarbon 49(2): 775–788.
 
35.
Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis J, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov V, Lorius C, Pépin L, Ritz C, Saltzman E and Stievenard M, 1999. Climate and Atmospheric History of the Past 420,000 years from the Vostok Ice Core, Antarctica. Nature 399(6735): 429–436, DOI 10.1038/20859. http://dx.doi.org/10.1038/2085....
 
36.
Rakowski AZ, 2010. Metoda radioweglowa w pomiarach udziału CO 2emitowanego do atmosfery ze spalania paliw kopalnych (Radiocarbon method in measurement of fossil fuel component of carbon dioxide in the atmosphere). Wydawnictwo Politechniki Śląskiej. ISBN 978-83-7335-688-7: 120pp (in Polish).
 
37.
Rakowski AZ, Pawełczyk S and Pazdur A, 2001. Changes of 14C con-centration in modern trees from Upper Silesia region, Poland. Radiocarbon 43(2B): 679–689.
 
38.
Rakowski A, Kuc T, Nakamura T and Pazdur A, 2004a. Radiocarbon Concentration in the Atmosphere and Modern Tree Rings in the Kraków Area, Southern Poland. Radiocarbon 46(2): 911–916.
 
39.
Rakowski AZ, Nakamura T and Pazdur A, 2004b. Changes of radiocarbon concentration in modern wood from Nagoya, central Japan. Nuclear Instruments and Methods in Physics Research Section B 223–224: 507–510, DOI 10.1016/j.nimb.2004.04.095. http://dx.doi.org/10.1016/j.ni....
 
40.
Rakowski AZ, Kuc T, Nakamura T and Pazdur A, 2005. Radiocarbon concentration in urban area. Geochronometria 24: 63–68.
 
41.
Rakowski AZ, Nakamura T and Pazdur A, 2008. Variations of anthropogenic CO2 in urban area deduced by radiocarbon concentration in modern tree rings. Journal of Environmental Radioactivity 99(10): 1558–1565, DOI 10.1016/j.jenvrad.2007.12.007. http://dx.doi.org/10.1016/j.je....
 
42.
Rakowski AZ, Nakamura T, Pazdur A, Charo E, Gutierrez-Villanueva JL and Piotrowska N, 2010. Radiocarbon concentration in modern tree rings from Valladolid, Spain. Nuclear Instruments and Methods In Physics Research Section B-Beam Interactions with Materials and Atoms 268(7–8): 1110–1112, DOI 10.1016/j.nimb.2009.10.111. http://dx.doi.org/10.1016/j.ni....
 
43.
Schmidt M, Graul R, Sartorius H and Levin I, 2003. The Schauinsland CO2 record: 30 years of continental observations and their implications for the variability of the European CO2 budget. Journal of Geophysical Resaearch 108(D19): 4619–4625, DOI 10.1029/2002JD003085. http://dx.doi.org/10.1029/2002....
 
44.
Stuiver M and Polach HA, 1977. Reporting of 14C data. Radiocarbon 19: 355–363.
 
45.
Stuiver M and Quay PD, 1981. Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth and Planetary Science Letters 53(3): 349–362, DOI 10.1016/0012-821X(81)90040-6. http://dx.doi.org/10.1016/0012....
 
46.
Suess HE, 1955. Radiocarbon concentration in modern wood. Science 122: 415–417, DOI 10.1126/science.122.3166.415-a. http://dx.doi.org/10.1126/scie....
 
47.
Telegadas K, 1971. The seasonal atmospheric distribution and inventories of excess carbon-14 from March 1955 to July 1969. U S Atomic Energy Commission Report HASL-243.
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top