RESEARCH PAPER
The Effect of Thermal Stimulation on the Far-Red and Orange-Red IRSL Signal of a French K-Rich Feldspar: Preliminary Results
 
More details
Hide details
 
Online publication date: 2010-01-06
 
 
Publication date: 2009-01-01
 
 
Geochronometria 2009;34:15-24
 
KEYWORDS
ABSTRACT
Feldspar suffers from anomalous fading. Previous studies suggest that the level of fading depends on the emission band, and that the fading decreases by increasing the emission wavelengths; therefore, it is interesting to compare blue, orange and far-red IRSL emission characteristics. The purpose of this article is to make an initial consideration of some physical differences between two close emission windows. The effect of the sample temperature on far-red (λ>650 nm) and orangenear-red IRSL (λ=600-650 nm) from an identical feldspar sample is investigated. The difference in signal decay rate and thermal effects is discussed. While there is signal enhancement for far-red IRSL signals between 100-220°C, orange-near-red signals do not change. Some possible mechanisms for producing far-red and orange-near-red IRSL are discussed. This paper shows that orange-near-red IRSL and far-red IRSL thermal activation energies are different. This difference may be the cause of previously observed differences in stability of near and far-red IRSL signals.
REFERENCES (36)
1.
Aitken MJ, 1998. An Introduction to Optical Dating: The dating of Quaternary sediments by the use of photon-stimulated luminescence. Oxford, Oxford University Press: 267 pp.
 
2.
Bailiff IK and Barnett SM, 1994. Characteristics of infrared stimulated luminescence from feldspar at low temperature. Radiation Measurements 23: 541-545, DOI 10.1016/1350-4487(94)90096-5.10.1016/1350-4487(94)90096-5.
 
3.
Bøtter-Jensen L, Duller GAT and Murray AS, 2000. Advances in luminescence instrument systems. Radiation Measurements 32(5-6): 523-528, DOI 10.1016/S1350-4487(00)00039-1.10.1016/S1350-4487(00)00039-1.
 
4.
Clarke ML, Wintle AG and Lancaster N, 1996. Infra-red stimulated luminescence dating of sands from the Cronese Basins, Mojave Desert. Geomorphology 17(1-3): 199-205, DOI 10.1016/0169-555X(95)00103-C.10.1016/0169-555X(95)00103-C.
 
5.
Colls AEL, 1999. Optical dating of fluvial sediment from the Loire Valley, France. MSc Thesis. Oxford, University of Oxford.
 
6.
Colls AE, Stokes S, Blum MD, Straffin E, 2001. Age limits on the late quaternary evolution of the upper Loire River. Quaternary Science Reviews 20: 743-750, DOI 10.1016/S0277-3791(00)00048-2.10.1016/S0277-3791(00)00048-2.
 
7.
Deer WA, Howie RA and Zussman J, 1992. An Introduction to the Rock-Forming Minerals. Longman, Harlow: 696 pp.
 
8.
Duller GAT, 1994. Luminescence dating using feldspars: a test case from southern North Island in New Zealand. Quaternary Science Reviews 13: 423-427, DOI 10.1016/0277-3791(94)90053-1.10.1016/0277-3791(94)90053-1.
 
9.
Duller GAT, 1997. Behavioural studies of stimulated luminescence from feldspars. Radiation Measurements 27: 663-694, DOI 10.1016/S1350-4487(97)00216-3.10.1016/S1350-4487(97)00216-3.
 
10.
Duller GAT and Wintle AG, 1991. On infra-red stimulated luminescence at elevated temperatures. Nuclear Tracks and Radiation Measurements 18(D: 4): 379-384, DOI 10.1016/1359-0189(91)90003-Z.10.1016/1359-0189(91)90003-Z.
 
11.
Fattahi M, 2001. Studies on red thermoluminescence and infrared stimulated red luminescence. Unpublished D. Phil. Thesis. Oxford, Oxford University.
 
12.
Fattahi M, 2004. The dependence of orange-red IRSL decay curves of potassium feldspar on sample temperature. Radiation Measurements 38(3): 287-298, DOI 10.1016/j.radmeas.2003.09.006.10.1016/j.radmeas.2003.09.006.
 
13.
Fattahi M and Stokes S, 2003a. Photomultiplier and filter combinations for the detection of relatively long wavelength (λ>600 nm) luminescence emissions from feldspar. Ancient TL 21(1): 25-35.
 
14.
Fattahi M and Stokes S, 2003b. Infrared stimulated red luminescence from potassium feldspar for dating applications: A study of some properties relevant for dating. Radiation Measurements 37(6): 647-660, DOI 10.1016/S1350-4487(03)00246-4.10.1016/S1350-4487(03)00246-4.
 
15.
Fattahi M and Stokes S, 2003c. Absorbed dose evaluation in feldspar using a single-aliquot regenerative-dose (SAR) infrared-stimulated red luminescence protocol. Radiation Measurements 38(1): 127-134, DOI 10.1016/S1350-4487(03)00248-8.10.1016/S1350-4487(03)00248-8.
 
16.
Fattahi M, Walker R, Hollingsworth J, Bahroudi A, Talebian M, Armitage S and Stokes S, 2006. Holocene slip-rate on the Sabzevar thrust fault, NE Iran, determined using Optically-stimulated Luminescence (OSL). Earth and Planetary Science Letters 245: 673-684, DOI 10.1016/j.epsl.2006.03.027.10.1016/j.epsl.2006.03.027.
 
17.
Hütt G and Jaek I, 1993. Photostimulated luminescence of some materials and its dosimetry applications. Nuclear Tracks and Radiation Measurements.Part D 21(5-6): 95-98, DOI 10.1016/1359-0189(93)90051-A.10.1016/1359-0189(93)90051-A.
 
18.
Hütt G, Jaek I and Tchonka J, 1988. Optical dating: potassium feldspars optical response stimulation spectra. Quaternary Science Reviews 7: 381-385, DOI 10.1016/0277-3791(88)90033-9.10.1016/0277-3791(88)90033-9.
 
19.
Krbetschek MR, Götze J, Dietrich A and Trautmann T, 1997. Spectral information from minerals relevant for luminescence dating. Radiation Measurements 27(5-6): 695-748, DOI 10.1016/S1350-4487(97)00223-0.10.1016/S1350-4487(97)00223-0.
 
20.
Lamothe M and Auclair M, 1999. A solution to anomalous fading and age shortfalls in optical dating of feldspar minerals. Earth and Planetary Science Letters 171(3): 319-323, DOI 10.1016/S0012-821X(99)00180-6.10.1016/S0012-821X(99)00180-6.
 
21.
Lian OB and Shane PA, 2000. Optical dating of paleosols bracketing the widespread Rotoehu tephra, North Island, New Zealand. Quaternary Science Reviews 19: 1649-1662, DOI 10.1016/S0277-3791(00)00003-2.10.1016/S0277-3791(00)00003-2.
 
22.
Manning PG, 1970. Racah parameters and their relationship to lengths and co-valencies of Mn2+ - and Fe3+ -oxygen bonds in silicates. Can Miner 10: 677-688.
 
23.
McKeever SWS, 2001. Optically stimulated luminescence dosimetry. Nuclear Instruments and Methods B 184: 29-54, DOI 10.1016/S0168-583X(01)00588-2.10.1016/S0168-583X(01)00588-2.
 
24.
McKeever SWS, Bøtter-Jensen L, Agersnap Larsen N and Duller GAT, 1997. Temperature dependence of OSL decay curves: experimental and theoretical aspects. Radiation Measurements 27: 161-170, DOI 10.1016/S1350-4487(96)00106-0.10.1016/S1350-4487(96)00106-0.
 
25.
Molodkov A, Jaek I and Vasilchenko V, 2007. Anomalous fading of IR-stimulated luminescence from feldspar minerals: some results of the study. Geochronometria 26: 11-17, DOI 10.2478/v10003-007-0007-0.10.2478/v10003-007-0007-0.
 
26.
Poolton NRJ, Bøtter -Jensen L and Johnsen O, 1995. Thermo-optical properties of optically stimulated luminescence in feldspars. Radiation Measurements 24: 531-534, DOI 10.1016/1350-4487(94)00114-G.10.1016/1350-4487(94)00114-G.
 
27.
Poolton NRJ, Wallinga J, Murray A, Bulur E and Botter-Jensen L, 2002a. Electrons in feldspar I: on the wavefunction of electrons trapped at simple lattice defects. Physics Chemistry Minerals 29: 210-216, DOI 10.1007/s00269-001-0217-3.10.1007/s00269-001-0217-3.
 
28.
Poolton NRJ, Ozanyan KB, Wallinga J, Murray A and Botter-Jensen L, 2002b. Electrons in feldspar II: a consideration of the influence of conduction band-tail states on luminescence processes. Physics Chemistry Minerals 29: 217-225, DOI 10.1007/s00269-001-0218-2.10.1007/s00269-001-0218-2.
 
29.
Richardson CA, McDonald EV and Busacca AJ, 1999. A luminescence chronology for loess deposition in Washington State and Oregon, USA. Zeitschrift fur Geomorphologie 116: 77-95.
 
30.
Rieser U, Hütt G, Krbetschek MR and Stolz W, 1997. Feldspar IRSL emission spectra at high and low temperatures. Radiation Measurements 27: 273-278, DOI 10.1016/S1350-4487(96)00108-4.10.1016/S1350-4487(96)00108-4.
 
31.
Telfer DJ and Walker G, 1978. Ligand field bands of Mn2+ - and Fe3+ luminescence centers and their site occupancy in plagioclase feldspars. Modern Geology 6: 199-210.
 
32.
Trautmann T, Krbetschek MR, Dietrich A and Stolz W, 2000. The basic principle of radioluminescence dating and a localized transition model. Radiation Measurements 32(5-6): 487-492, DOI 10.1016/S1350-4487(00)00119-0.10.1016/S1350-4487(00)00119-0.
 
33.
Visocekas R, 2000. Monitoring anomalous fading of TL of feldspars by using far-red emission as a gauge. Radiation Measurements 32: 499-504, DOI 10.1016/S1350-4487(00)00054-8.10.1016/S1350-4487(00)00054-8.
 
34.
Visocekas R, Tale V, Zink A, Spooner NA and Tale I, 1996. Trap spectroscopy and TSL in feldspars. Radiation Protection Dosimetry 66(1-4): 391-394.10.1093/oxfordjournals.rpd.a031761.
 
35.
Wallinga J, Murray AS, Duller G, 2000. Underestimation of equivalent dose in single-aliquot optical dating of feldspars caused by preheating. Radiation Measurements 32(5-6): 691-695, DOI 10.1016/S1350-4487(00)00127-X.10.1016/S1350-4487(00)00127-X.
 
36.
Zink AJC and Visocekas R, 1997. Datability of sanidine feldspars using the near-infrared TL emission. Radiation Measurements 27(2): 251-261, DOI 10.1016/S1350-4487(96)00141-2.10.1016/S1350-4487(96)00141-2.
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top