RESEARCH PAPER
The Permutation Test for Testing the Statistical Significance of the Power Spectrum Estimation in Dendrochronological Analysis
 
More details
Hide details
1
Faculty of Geology, Geophysics and Environmental Protection, AGH - University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
 
 
Online publication date: 2010-11-25
 
 
Publication date: 2010-01-01
 
 
Geochronometria 2010;36:23-29
 
KEYWORDS
ABSTRACT
The study presents a proposal of application of the statistical permutation test, known from other applications, for searching for the symptoms of cyclicity, in particular related to solar activity, in the annual growth sequences of trees. The test consists in generation of random sequences of the increment widths observed and comparison of their periodograms with the periodogram of the sequence analysed. This allows for evaluation of the significance of the individual frequencies in the total variability. The model calculations carried out indicate that in the studies on cyclicity in dendrochronological sequences satisfactory results could be obtained in the analysis of sets of the individual sequences (but not the chronologies produced from them). It is important to generate sufficiently high numbers (1000 and more) of random sequences and to apply relatively low significance levels (at 0.05, or even 0.01).
REFERENCES (29)
1.
Ammons R, Ammons A and Ammons RB, 1983. Solar activity-related quasi-cycles in Tertiary tree-ring records: evidence and methodological studies. In: McCormac BM, ed., Weather and Climate Responses to Solar Variations, Proceedings of the Second International Symposium on Solar-Terrestrial Influences on Weather and Climate, Boulder, CO, August 2-6, 1982. Colorado Associated University Press, Boulder: 535 p.
 
2.
Brockwell PJ and Davis RA, 1991. Time Series: Theory and Methods. Springer, New York: 577pp.10.1007/978-1-4419-0320-4.
 
3.
Cook ER and Peters K, 1981. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin 41: 45-53.
 
4.
Douglass AE, 1909. Weather cycles in the growth of big trees. Monthly Weather Review 37: 225-237.10.1175/1520-0493(1909)37[225d:WCITGO]2.0.CO;2.
 
5.
Dutilleul P and Till C, 1992. Evidence of periodicities related to climate and planetary behaviors in rings-width chronologies of Atlas cedar (Cedrus atlantica) in Marocco. Canadian Journal of Forest Research 22: 1469-1482, DOI 10.1139/x92-197.10.1139/x92-197.
 
6.
Feliksik E, 1990. Badania dendroklimatyczne dotyczące jodły (Abies alba Mill.) występującej na obszarze Polski. (Dendroclimatological investigations of the common fir (Abies alba Mill.) from the territory of Poland). Zeszyty Naukowe AR Kraków 151: 106 pp (In Polish).
 
7.
Fisher RA, 1935. The Design of Experiments. Oliver and Boyd, Edinburgh.
 
8.
Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson AW, Saunders A, Tian Y, Varadi F and Yiou P, 2002. Advanced spectral methods for climatic time series. Reviews of Geophysics 40(1): 1-41, DOI 10.1029/2000RG000092.10.1029/2000RG000092.
 
9.
Helama S, Makarenko NG, Karimova LM, Kruglun OA, Limonen M, Holopainen J, Meriläinen J and Eronen M, 2009. Dendroclimatic transfer functions revisited: Little Ice Age and Medieval Warm Period summer temperatures reconstructed using artificial neural networks and linear algoritms. Annales Geophysicae 27: 1097-1111.10.5194/angeo-27-1097-2009.
 
10.
Kasatkina EA, Shumilov OI and Krąpiec M, 2007. On periodicities in long term climatic variations near 68° N, 30° E. Advances in Geosciences 13: 25-29, DOI 10.5194/adgeo-13-25-2007.10.5194/adgeo-13-25-2007.
 
11.
Krawczyk AJ and Krąpiec M, 2003a. Annual growth sequences and solar activity cycles (examples from subfossil oaks from Southern Poland). Bulletin of the Polish Academy of Sciences, Earth Sciences 51(1): 29-41.
 
12.
Krawczyk AJ and Krąpiec M, 2003b. Schwabe solar cycle in tree-ring sequences from the last 4000 years (Southern Poland). Bulletin of the Polish Academy of Sciences, Earth Sciences 51(2): 91-97.
 
13.
Kurths J, Spiering Ch, Müller-Stoll W and Striegler U, 1993. Search for solar periodicities in Miocene tree ring widths. Terra Nova 5(4): 359-363, DOI 10.1111/j.1365-3121.1993.tb00269.x.10.1111/j.1365-3121.1993.tb00269.x.
 
14.
La Marche V C and Fritts H C, 1972. Tree rings and sunspot number. Tree-Ring Bulletin 32: 19-33.
 
15.
Lindholm M, Ogurtsov M, Aalto T, Jalkanen R and Salminen H, 2009. A summer temperature proxy from increment of Scots pine since 1561 at the northern timberline in Fennoscandia. The Holocene 19(8): 1131-1138, DOI 10.1177/0959683609345078.10.1177/0959683609345078.
 
16.
Lipp J, Trimborn P and Becker B, 1992. Rhytmic δ-D fluctuations in tree-ring latewood cellulose of spruce trees (Picea abies L.). Dendrochronologia 10: 9-22.
 
17.
von Lürthe A, 1991. Dendroökologische Untersuchungen an Kiefern und Eichen in den stadtnahen Berliner Forsten. Landschaftsentwicklung und Umweltforschung. Schriftenreihe des Fachbereichs Landschaftsentwicklung der TU Berlin 77: 186 pp.
 
18.
Mori Y, 1981. Evidence of an 11-yr periodicity in tree-ring series from Formosa related to the sunspot cycle. International Journal of Climatology 1: 345-353, DOI 10.1002/joc.3370010407.10.1002/joc.3370010407.
 
19.
Murphy JO, 1991. The downturn in solar activity during solar cycles 5 and 6. Proceedings of the Astronomical Society of Australia 9(2): 330-331.10.1017/S1323358000024425.
 
20.
Murphy JO and Veblen TT, 1992. Proxy data from tree ring time series for the eleven year solar cycle. Proceedings of the Astronomical Society of Australia 10: 64-67.10.1017/S1323358000019275.
 
21.
Pardo-Igúzquiza E and Rodriguez-Tovar FJ, 2000. The permutation test as a non-parametric method for testing the statistical significance of power spectrum estimation in cyclostratigraphic research. Earth and Planetary Science Letters 181(1-2): 175-189, DOI 10.1016/S0012-821X(00)00191-6.10.1016/S0012-821X(00)00191-6.
 
22.
Pitman EJG, 1937. Significance Tests Which May Be Applied To Samples From Any Populations. Journal of the Royal Statistical Society - Supplement 4: 119-130.10.2307/2984124.
 
23.
Rigozo NR, Nordemann DJR, da Silva HE, Souza Echer MP and Echer E, 2007. Solar and climate signal records in tree ring width from Chile (AD 1587-1994). Planetary and Space Science 55(1-2):158-164, DOI 10.1016/j.pss.2006.06.019.10.1016/j.pss.2006.06.019.
 
24.
Rigozo N R, Prestes A, Nordemann DJR, da Silva HE, Souza Echer MP and Echer E, 2008. Solar maximum epoch imprints in tree-rings width from Passo Fundo, Brazil (1741-2004). Journal of Atmospheric and Solar-Terrestial Physics 70(7): 1025-1033, DOI 10.1016/j.jastp.2008.02.002.10.1016/j.jastp.2008.02.002.
 
25.
Shchemelevas YS, 1977. Climatic cycles and predictions in Lithuania., In: Fletcher JM and Linnard W, eds., Russian Papers on Dendrochronology and Dendroclimatology 1952, 1968, 1970, 1972. Research Laboratory for Archaeology and History of Art, Oxford University: 23-24.
 
26.
Schweingruber FH, Aellen-Rumo K, Weber U and Wehrli U, 1990. Rhytmic growth fluctuations in forest trees of Central Europe and the Front Range in Colorado. Trees 4(2): 99-106, DOI 10.1007/BF00226072.10.1007/BF00226072.
 
27.
Thompson DJ, 1982. Spectrum Estimation and Harmonic Analysis. Proceedings of the IEEE 70(9): 1055-1096.10.1109/PROC.1982.12433.
 
28.
Zanzi A, Pelfini M, Muttoni G, Santilli M and Leonelli G, 2007. Spectral analysis on mountain pine tree-ring chronologies. Dendrochronologia 24(2-3): 145-154, DOI 10.1016/j.dendro.2006.10.002.10.1016/j.dendro.2006.10.002.
 
29.
Zielski A, Krąpiec M, Wilczyński S and Szychowska-Krąpiec E, 2001. Chronologie przyrostów radialnych sosny zwyczajnej w Polsce (Chronologies of radial growths of Scots pine in Poland). Sylwan CXLV(5): 105-119 (In Polish).
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top