RESEARCH PAPER
The application of the tree-ring chronologies in assessing ecological requirements of Metasequoia glyptostroboides growing in southern Poland
More details
Hide details
1
Faculty of Forestry, Department of Forest Protection, Entomology and Forest Climatology, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425, Cracow, Poland
2
Faculty of Forestry, Forest Biodiversity Institute, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425, Cracow, Poland
3
Faculty of Forestry, Department of Biometry and Forest Productivity, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425, Cracow, Poland
Online publication date: 2014-03-20
Publication date: 2014-06-01
Geochronometria 2014;41(2):129-135
KEYWORDS
ABSTRACT
Metasequoia glyptostroboides is considered to be a species highly resistant to harmful environmental factors. For this reason it has been introduced to the cities. The climate of Krakow differs from that in its natural range in China. The research was focused on 40-year-old trees, planted in Kraków on fertile alluvial soils with a low level of ground water, in the vicinity of the steelworks. During the period of the highest level of air pollution in the 1970s and 1980s, the radial increment of investigated trees showed an increasing trend. At the end of the 1980s, when the emissions were reduced, a decreasing trend in radial growth was recorded. Throughout the entire period of their life the investi-gated trees have shown high homogeneity of short-term growth reactions. The sensitivity chronology of the trees was characterized by a high representativeness and a strong high-frequency signal. This may indicate that the investigated trees have shown a large sensitivity to climatic factors.
The positive effect on the radial growth of Metasequoia had a cold September in the previous year, and also a cold January, April and May in the year of ring formation. Positive impact on the growth of trees had also the high precipitation occurring in April and August, as well as high air humidity in the spring of the year of ring formation. In the period 1974–2011 fifteen signature years were found. The analysis of the climatic conditions in these years confirms the results of the statistical analyses.
REFERENCES (56)
1.
Ballantyne AP, Rybczynski N, Baker PA, Harington CR and White D, 2006. Pliocene Arctic temperature constraints from the growth rings and isotopic composition of fossil larch. Palaeogeography, Palaeoclimatology, Palaeoecology 242(3–4): 188–200, DOI 10.1016/j.palaeo.2006.05.016.
http://dx.doi.org/10.1016/j.pa....
2.
Bartholomew B, Boufford DE and Spongberg SA, 1983. Metasequoia glyptostroboides — its present status in central China. Journal of Arnold Arboretum 64: 105–128.
3.
Białobok S, 1949. Metasequoia — jeszcze jedna żyjąca kopalina (Metasequoia — one more living fossil). Wszechświat 1: 23–25 (in Polish).
4.
Biondi F and Waikul K, 2004. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers & Geosciences 30(3): 303–311, DOI 10.1016/j.cageo.2003.11.004.
http://dx.doi.org/10.1016/j.ca....
5.
Briffa KR and Jones PD, 1990. Basic Chronology Statistics and Assessment. In: Cook ER, Kairiukstis LA, eds., Methods of Dendrochronology: Applications in the Environmental Sciences. Dordrecht: Kluwer Academic Publishers: 137–152.
6.
Bugała W, 1983. Metasequoia glyptostroboides — 35 lat uprawy w Arboretum Kórnickim (Metasequoia glyptostroboides — 35 years practicing in Arboretum Kórnickie). Arboretum Kórnickie 28: 101–112 (in Polish).
7.
Chałupka W, 1975. Wpływ czynników klimatycznych na urodzaj szyszek u świerka pospolitego (Picea abies (L.) Karst.) w Polsce (Influence of climatic factors on cone crops of spruce (Picea abies (L.) Karst.) in Poland). Arboretum Kórnickie 20: 213–225 (in Polish).
8.
Chałupka W, Giertych M and Królikowski Z, 1975. The effect of cone crops on growth in Norway spruce (Picea abies (L.) Karst.). Arboretum Kórnickie 20:201–212.
9.
Chałupka W, Giertych M and Królikowski Z, 1976. The effect of cone crops on growth in Scot pine on tree diameter increment. Arboretum Kórnickie 21: 361–366.
10.
Chen XY, Li YY, Wu TY, Zhang X and Lu HP, 2003. Size class differences in genetic structure of Metasequoia glyptostroboides Hu et Cheng (Taxodiaceae) plantations in Shanghai. Silvae Genetica 52: 107–109.
11.
Chu KL and Cooper SW, 1950. An ecological reconnaissance in the native home of Metasequoia glyptostroboides. Ecology 31(2): 260–277, DOI 10.2307/1932391.
http://dx.doi.org/10.2307/1932....
12.
Czekalski M, 1982. Metasekwoja chińska (Metasequoia Chinese). Ogrodnictwo 7: 194.
13.
De Witt E and Ames M, 1978. Tree-ring chronologies of eastern North America. Chronology Series 4, Laboratory of Tree-Ring Research, University of Arizona, Tucson.
15.
Eckstein D and Bauch J, 1969. Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit (Contribution to the rationalization of a dendrochronological method and the analysis of its reliability). Forstwis-senschaftliches Centralblatt 88: 230–250 (in German).
http://dx.doi.org/10.1007/BF02....
16.
Eis S, Garman H and Bell LH, 1965. Relation between cone production and diameter increment of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco), Grand fir (Abies grandis (Dougl.) Lindl.) and Western white pine (Pinus monticola Dougl.). Canadian Journal of Botany 43(12): 1553–1559, DOI 10.1139/b65-165.
http://dx.doi.org/10.1139/b65-....
17.
Ermich K, 1963. The inception and the end of the annual tree-ring formation in Fagus silvatica L., Abies alba Mill., and Picea excelsa L. in Tatra Mountains. Ekologia Polska Seria A 11(13): 311–336.
18.
Fritts HC, 1976. Tree Rings and Climate. Academic Press, New York: 567pp.
19.
Fu LG and Jin JM, 1992. China Plant Red Data Book: Race and Endangered Plants. Science Press, Beijing: 736pp.
20.
Gittlen W, 1998. Discovered alive. The Story of the Chinese Redwood. Pierside Publications Berkeley Frankfort.
21.
Guiot J, 1991. The bootstrapped response function. Tree Ring Bulletin 51:39–41.
22.
Hejnowicz A, 1982. Budowa i rozwój wegetatywnych pąków sosny zwyczajnej Pinus sylvestris L. (Construction and development of vegetative buds of Scots pine (Pinus sylvestris L.). Instytut Dendrologii PAN, Kórnik.
23.
Holmes RL, 1986. Quality control of crossdating and measuring. A users manual for program COFECHA. In: Holmes RL, Adams RK and Fritts HC, eds., Tree-ring chronologies of western North America: California, Eastern Oregon and Northern Great Basin. Chronology Series 6, Tucson. University of Arizona: 41–49.
24.
Holstener-Jorgensen H, 1967. Influences of forest management and drainage on groundwater fluctuations. Forest Hydrology. In: Sopper WE, Lull HW, eds., Pergamon Press, Oxford: 325–480.
25.
Hrynkiewicz-Sudnik J, Sękowski B and Wilczkiewicz M, 1999. Rozmnażanie drzew i krzewów nagozalążkowych (Reproduction of trees and shrubs gymnosperms). Wydawnictwo Naukowe PWN: 355–357 (in Polish).
26.
Hu HH, 1946. Notes on a Palaeogene species of Metasequoia in China. Bulletin of Geological Society of China 26: 105–107, DOI 10.1111/j.1755-6724.1946.mp26001005.x.
http://dx.doi.org/10.1111/j.17....
27.
Hu HH, 1948. How Metasequoia, The “Living fossil” Was Discovered In China. Journal of The New York Botanical Garden 49(585): 201–207.
28.
Hu HH and Cheng WC, 1948. On the new family Metasequoiaceae and on Metasequoia glyptostroboides, a living species of the genus Metasequoia found in Szechuan and Hupeh. Bulletin of the Fan Memorial Institute of Biology, N. S. L. 161: 1–2.
29.
Hughes MK, Kuniholm PL, Eischeid JK, Garfin G, Griggs CB and Latini C, 2001. Aegean tree-ring signature years explained. Tree-Ring Research 57: 67–73.
30.
Kelly PM, Leuschner HH, Briffa KR and Harris IC, 2002. The climatic interpretation of pan-European signature years in oak ring-width series. The Holocene 12(6): 689–694, DOI 10.1191/0959683602hl582rp.
http://dx.doi.org/10.1191/0959....
31.
Kelly PM, Murno MAR, Hughes MK and Goodess CM, 1989. Climate and signature years in Western European oaks. Nature 340(6228): 57–60, DOI 10.1038/340057a0.
http://dx.doi.org/10.1038/3400....
32.
Kuser J, 1983. Inbreeding depression in Metasequoia. Journal of the Arnold Arboretum 64: 475–481.
33.
Kuser JE, Sheely DL and Hendricks DR, 1997. Genetic variation in two ex situ collections of the rare Metasequoia glyptostroboides (Cupressaceae). Silvae Genetica 46: 258–264.
34.
Leng Q, Fan SH, Li W, Yang H, Lai XL, Cheng DD, Ge JW, Shi GL, Jiang Q and Liu XQ, 2007. Database of native Metasequoia glyptostroboides trees in China based on new census surveys and expeditions. Bulletin Peabody Museum National History 48(2): 185–233.
http://dx.doi.org/10.3374/0079....
35.
LePage BA, Yang H and Matsumoto M, 2005. The evolution and biogeographic history of Metasquoia. In: LePage BA, Williams CJ and Yang H, eds., The Geobiology and Ecology of Metasequoia. Springer, Dordrecht: 3–114pp.
http://dx.doi.org/10.1007/1-40....
36.
Li HL, 1953. Present distribution and habitats of the conifers and taxads. Morris Arboretum, University of Pennsylvania. Evolution 7: 245–261.
http://dx.doi.org/10.2307/2405....
37.
Li JH and Ban JD, 1989. The water fir communities endemic to China. J. Henan Normal University 4: 49–55.
38.
Łukasiewicz A, 1995. Dobór drzew i krzewów dla zieleni miejskiej środkowo-zachodniej Polski (The selection of trees and shrubs for urban green areas in the central-western Poland). Wydawnictwo Naukowe UAM, Seria Biologiczna 53 (in Polish).
40.
Monteuuis O, Goubier P, Pages C, Pezet C and Sarran P, 1987. Metasequoia glyptostroboides renseignements specifiques et bouturage. Extrait des Annales Afocel: 211–253.
41.
Seneta W and Dolatowski J, 2002. Dendrologia (Dendrology). PWN, Warszawa (in Polish).
42.
Spain J and Pilcher JR, 1994. Signature years in European oak chronologies A.D. 1600–1750 and possible climatic causes. In: Frenzel B, pred., Climatic trends and anomalies in Europe 1675–1715. Paleoclimate Research 13: 123–131.
43.
Surmiński J and Bojarczuk T, 1973. Drewno metasekwoi chińskiej (Metasequoia glyptostroboides Hu et Cheng) polskiego pochodzenia (The wood metasekwoi Chinese (Metasequoia glyptostroboides Hu et Cheng) of Polish origin). Roczniki Dendrologiczne 27: 159–168 (in Polish).
44.
Szymkiewicz B, 2001. Tablice zasobności i przyrostu drzewostanów ważniejszych gatunków drzew leśnych (Tables of volume and growth of stands for major forest tree species). PWRiL, Warszawa (in Polish).
45.
Tang CQ, Yang Y, Ohsawa M, Momohara A, Hara M, Cheng S and Fan S, 2011. Population structure of relict Metasequoia glyptostroboides and its habitat fragmentation and degradation in south-central China. Biological Conservation 144(1): 279–289, DOI 10.1016/j.biocon.2010.09.003.
http://dx.doi.org/10.1016/j.bi....
46.
Wigley TML, Briffa KR and Jones PD, 1984. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. Journal of Climatology and Applied Meteorology 23(2): 201–213, DOI 10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2.
http://dx.doi.org/10.1175/1520...<0201:OTAVOC>2.0.CO;2.
47.
Wilczyński S and Podlaski R, 2005. Klimatyczny model aktywności kambium waskularnego wierzby białej (Salix alba L.) z Świętokrzyskiego Parku Narodowego (A climatic model of cambium vascular activity for white willow (Salix alba L.) from the Świętokrzyski National Park). Sylwan 7: 14–22 (in Polish).
48.
Wilczyński S, 2004. Lata wskaźnikowe i wyjątkowe w ocenie związków przyrost radialny — klimat (The pointer and exceptional years in assessment of relationships radial growth-climate). Sylwan 5: 30–40 (in Polish).
49.
Wilczyński S, 2010. Uwarunkowania przyrostu radialnego wybranych gatunków drzew z Wyżyny Kieleckiej w świetle analiz dendroklimatologicznych (Determinants of radial growth in some tree species on Kielceka Upland in light of dendroclimatological analyses). Zeszyty Naukowe Uniwersytetu Rolniczego w Krakowie 464(341): 221pp (in Polish).
50.
Williams CJ, 2005. Ecological characteristics of Metasequoia glyptostroboides. In: LePage BA, Williams CJ, Yang H, eds., The Geobiology and Ecology of Metasequoia. Springer, Dordrecht: 285–304pp.
51.
Williams CJ, LePage BA, Vann DR, Tange T, Ikeda H, Ando M, Kuskabe T, Tsuzuki T and Sweda T, 2003. Structure, allometry and biomas of planataion Metasequoia glyptostroboides in Japan. Forest Ecology and Management 180(1–3): 287–301, DOI 10.1016/S0378-1127(02)00567-4.
http://dx.doi.org/10.1016/S037....
52.
Yang H, 2005. Biomolecules from living and fossil Metasequoia: biological and geological applications. In: LePage BA, Williams CJ, Yang H, eds., The Geobiology and Ecology of Metasequoia. Springer, Dordrecht: 253–279pp.
53.
Yang H and Jin JH, 2000. Phytogeographic history and evolutionary stasis of Metasquoia: geological and genetic information contrasted. Acta Paleontology Sinica 39: 288–307.
54.
Yang H, Liu W, Leng Q, Hren MT and Pagani M, 2011. Variation in n-alkane dD values from terrestrial plants at high latitude: Implications for paleoclimate reconstruction. Organic Geochemistry 42(3): 283–288, DOI 10.1016/j.orggeochem.2011.01.006.
http://dx.doi.org/10.1016/j.or....
55.
You D, Wang Z, Lei Y and Ma G, 2008. Community classification and dynamics succesion of natural forest of Metasequoia glyptostroboides Hu et Cheng. Hubei Forest Science Technology 153: 6–11.
56.
Zan S, 1971. Na 20-lecie Metasekwoi Chińskiej (On the occasion of the 20th anniversary of the Chinese Metasequoia). Roczniki Dendrologiczne 25: 77–115 (in Polish).