RESEARCH PAPER
The oldest seafloor massive sulfide deposits at the Mid-Atlantic Ridge: 230Th/U chronology and composition
 
More details
Hide details
1
St. Petersburg State University, V.O., 10-th Line 33/35, 199178, St. Petersburg, Russia
 
2
Institute for Geology and Mineral Resources of the Ocean (VNIIOkeangeologia), Angliysky Prospect 1, 190121, St. Petersburg, Russia
 
3
Polar Marine Geosurvey Expedition, Pobedy Str. 24, 198412 Lomonosov, St. Petersburg, Russia
 
 
Submission date: 2014-03-25
 
 
Acceptance date: 2015-02-01
 
 
Online publication date: 2015-05-22
 
 
Geochronometria 2015;42(1):100-106
 
KEYWORDS
ABSTRACT
A geochronological and geochemical study on 10 samples of seafloor massive sulfides (SMS) from the inactive Peterburgskoye hydrothermal field at the Mid-Atlantic Ridge (MAR) was carried out. The 230Th/U ages of the SMS are the oldest for the Quaternary hydrothermal ores ever found at the ocean floor. According to them the hydrothermal activity at Peterburgskoye field started at least 170 ka and continued down to 63 ka. The oldest hydrothermal ores from this field consist mainly of pyrite and chalcopyrite and have geochemical properties typical for SMS associated with basalts.
REFERENCES (28)
1.
Bogdanov YuA, Lisitsyn AP, Sagalevich AM and Gurvich EG, 2006. Gidrotermalny rudogenez okeanskogo dna (Hydrothermal ore formation of ocean floor). Moscow, Nauka: 527 (in Russian).
 
2.
Chen JH, Wasserburg CJ, van Damm KL and Edmond JM, 1986. The U-Th-Pb systematic in hot springs of the East Pacific Rise at 21”N and Guaymas Basin. Geochimica et Cosmochimica Acta 50: 2467-2479, DOI 10.1016/0016-7037(86)90030-X.
 
3.
Cheng H, Edwards RL, Hoff J, Gallup CD, Richards DA and Asmerom Y, 2000.The half-lives of uranium-234 and thorium-230. Chemical Geology 169: 17-33, DOI 10.1016/S0009-2541(99)00157-6.
 
4.
Cherkashev GA, Ivanov VN, Bel’tenev VI, Lazareva LI, Rozhdestven-skaya II, Samovarov ML, Poroshina IM, Sergeev MB, Stepanova TV, Dobretsova IG and Kuznetsov VYu, 2013. Massive Sulfide Ores of the Northern Equatorial Mid-Atlantic Ridge. Oceanology 53(5): 607-619, DOI 10.1134/S0001437013050032.
 
5.
Cochran JK, 1992. The oceanic chemistry of the uranium and thorium series nuclides. In: Uranium-series disequilibrium; Applications to earth, marine, and environmental sciences (ed. M. Ivanovich and R. S. Harmon), 2nd Edn., Oxford: Clarendon Press, 334-395.
 
6.
Finkel RC, Macdougall JD and Chung YC, 1980. Sulfide precipitates at 210 N on the East Pacific Rise: 226Ra, 210Pb and 210Po. Geophysical Research Letters 7(9): 685-688, DOI 10.1029/GL007i009p00685.
 
7.
Hannington M, Jamieson J, Monecke T, Peterson S, and Beaulieu S, 2011. The abundance of seafloor massive sulfide deposits. Geolo-gy 39: 1155-1158, DOI 10.1130/G32468.1. Henderson GM and Anderson RF, 2003. The U-series Toolbox for Paleoceanography. Reviews in Mineralogy and Geochemistry 52(1): 493-531, DOI 10.2113/0520493.
 
8.
Huh CA and Ku TL, 1984. Radiochemical observation on manganese nodules from three sedimentary environments in the North Pacific. Geochimica et Cosmochimica Acta 48(5): 951-963, DOI 10.1016/0016-7037(84)90187-X.
 
9.
Ignatova YuA, Eritenko AN, Revenko AG and Tsvetyansky AL, 2011. Rentgenofluorescentniy analiz tverdotel’nykh plenok I pokrytiy (X-ray analysis of thin-layer samples). Analysis and control 15(2):126-140 (in Russian).
 
10.
Ivanovich M and Harmon RS, 1992. Uranium-Series Disequilibrium: Applications to Earth, Marine and Environmental Sciences (2nd edt.). Oxford, Clarendon Press: 902. Jamieson JW, 2013. Size, age, distribution and mass accumulation rates of seafloor hydrothermal sulfide deposits. Ph.D. thesis, Canada, Ontario: 273pp.
 
11.
Kaufman A and Broecker WS, 1965. Comparison of Th230 and C14 ages for carbonates materials from Lakes Lahontan and Bonneville. Journal of Geophysical Research 70: 4030-4042, DOI 10.1029/JZ070i016p04039.
 
12.
Kuznetsov YuV, 1976. Radiokhronologia okeana (Radiochronology of Ocean). Atomizdat, Moscow: 279 (in Russian).
 
13.
Kuznetsov V, Cherkashev G, Lein A, Shilov V, Maksimov F, Arslanov Kh, Stepanova T, Baranova N, Chernov S and Tarasenko D, 2006. 230Th/U dating of massive sulfides from the Logatchev and Rain-bow hydrothermal fields (Mid-Atlantic Ridge). Geochronometria 25: 51-56.
 
14.
Kuznetsov V, Maksimov F, Zheleznov A, Cherkashov G, Bel’tenev V and Lazareva L, 2011. 230Th/U chronology of ore formation within the Semyenov hydrothermal district (13031’ N) at the Mid-Atlantic Ridge. Geochronometria 38: 72-76, DOI 10.2478/s13386-011-0001-1.
 
15.
Kuznetsov VYu and Maksimov FE, 2012. Metody chetvertichnoy geokhronometrii v paleogeografii I morskoy geologii (Methods of Quaternary Geochronometry in Palaeogeography and Marine Ge-ology). Saint-Petersburg, Nauka: 191pp (in Russian).
 
16.
Kuznetsov VYu, Tabuns EV, Bel’tenev VE, Cherkashev GA, Maksi-mov FE, Kuksa KA, Baranova NG and Levchenko SB, 2013. 230Th/U Chronology of seafloor massive sulfides formation within the Zenith-Victoria ore field. Bulletin of St. Petersburg State Uni-versity 4 (Series 7): 119-130 (in Russian, with abstract in English).
 
17.
Lalou C and Brichet E, 1982. Ages and implications of East Pacific Rise sulphide deposits at 21°N. Nature 300: 169-171, DOI 10.1038/300169a0.
 
18.
Lalou C, Reyss JL, Brichet E, Krasnov S, Stepanova T, Cherkashev G and Markov V, 1996. Initial chronology of a recently discovered hydrothermal field at 14°45’N, Mid- Atlantic Ridge. Earth and Planetary Science Letters 144: 483-490, DOI 10.1016/S0012-821X(96)00190-2.
 
19.
Lalou C, Thompson G, Rona PA, Brichet E and Jehanno C, 1986. Chronology of selected hydrothermal Mn oxide deposits from the trans-Atlantic geotraverse “TAG” area, Mid-Atlantic Ridge 260N. Geochimica et Cosmochimica Acta 50: 1737-1743, DOI 10.1016/0016-7037(86)90135-3.
 
20.
Lalou C, Reyss LG, Brichet E, Krasnov S, Stepanova T, Cherkashev G and Markov V, 1988. Chronology of a recently discovered hydro-thermal field at 14°45´N, Mid Atlantic Ridge. Earth and Planetary Science Letters 144: 483-490, DOI 10.1016/S0012-821X(96)00190-2.
 
21.
Lalou C, Reyss JL and Brichet E, 1998. Age of sub-bottom sulfide samples at the TAG active mound. In: Herzig PM., Humphris SE, Miller DJ, Zierenberg RA, Eds., Proceedings of the Ocean Drilling Program, Scientific Results 158: 111-117.
 
22.
Michard A, Albarede F, Michard G, Minster JF and Charlou JL, 1983. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13° N). Nature 303(5920): 795-797, DOI 10.1038/303795a0.
 
23.
Münch U, Lalou C, Halbach P and Fujimoto H, 2001. Relict hydro-thermal events along the super-slow Southwest Indian spreading ridge near 63856XE-mineralogy, chemistry and chronology of sul-fide samples. Chemical Geology 177: 341-349, DOI 10.1016/S0009-2541(00)00418-6.
 
24.
Renault J and McKee C, 1995. Method of X-ray Fluorescence Analysis For Environmental Lead, Especially in Household Dust, Using Thin-film Principles. Analyst 120: 1261- 1264, DOI 10.1039/AN9952001261.
 
25.
Shilov V, Bel’tenev V, Ivanov V, Cherkashev G, Rozhdestvenskaya I, Gablina I, Dobretsova I, Narkevskiy E, Gustaitis A and Kuznetsov V, 2012. New hydrothermal ore fields in the Mid-Atlantic Ridge: Zenith-Victoria (20008’ N) and Petersburg (19052’ N).
 
26.
Doklady Earth Sciences 442(1): 63-69, DOI 10.1134/S1028334X12010308.
 
27.
You CF and Bickle M, 1998. Evolution of an active sea-floor massive sulphide deposit. Nature 394: 668-671, DOI 10.1038/29279.
 
28.
Wang Y, Han X, Jin X, Qiu Z, Ma Z and Yang H, 2012. Hydrothermal Activity Events at Kairei Field, Central Indian Ridge 25°S. Re-source Geology 62(2): 208-214, DOI 10.1111/j.1751-3928.2012.00189.x.
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top