RESEARCH PAPER
Uncertainties on the Luminescence Ages and Anomalous Fading
 
 
More details
Hide details
1
Centre de Recherche et de Restauration des Musées de France, Palais du Louvre, Porte des lions 14 quai F. Mitterrand, 75001 Paris
 
 
Online publication date: 2009-04-06
 
 
Publication date: 2008-01-01
 
 
Geochronometria 2008;32:47-50
 
KEYWORDS
ABSTRACT
It is well known that some minerals give underestimated luminescence ages due to anomalous fading. The anomalous fading follows a logarithmic decay law characterized by its slope, the socalled fading rate or g-value. Using the fading rate, Huntley and Lamothe (2001) suggested some correction for the fading underestimation of young samples (<40-50 ka). For polymineral fine grains, we observe a fading rate of 0-4%/decade for TL and BL-OSL and 4-6%/decade for IR-OSL. Extending the laboratory observation to archaeological age, the underestimation on the age for 10 ka is estimated to a mean of 5% for TL, 10% for BL-OSL and 45% for IR-OSL. Due to the non-linearity of the Huntley and Lamothe's fading correction, the contribution of the fading to the total uncertainty is estimated by a Monte-Carlo simulation. The inference on dating shows that the uncertainty on the anomalous fading can be a significant term of the combined uncertainty on the age, even for low fading rates.
 
REFERENCES (13)
1.
Adamiec G and Aitken MJ, 1998. Dose-rate conversion factors: update. Ancient TL 16: 37-49.
 
2.
Aitken MJ, 1985, Thermoluminescence dating. London, Academic Press: 360 pp.
 
3.
Auclair M, Lamothe M and Huot S, 2003. Measurement of anomalous fading for feldspar IRSL using SAR. Radiation measurements 37(4-5): 487-492, DOI 10.1016/S1350-4487(03)00018-0.10.1016/S1350-4487(03)00018-0.
 
4.
Buck CE, Cavanagh WG and Litton CD, 1996. Bayesian approach to interpreting archaeological data. Chichester, John Wiley and sons: 382 pp.
 
5.
Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correct. Canadian Journal of Earth Science 38(7): 1093-1106, DOI 10.1139/cjes-38-7-1093.10.1139/e01-013.
 
6.
Kacker R, Toman B and Huang D, 2006. Comparison of ISO-GUM, draft GUM Supplement 1 and Bayesian statistics using simple linear calibration. Metrologia 43: S167-S177, DOI 10.1088/0026-1394/43/4/S02.10.1088/0026-1394/43/4/S02.
 
7.
Kerman J and Gelman A, 2006. Bayesian Data Analysis using R. Rnews 6: 21-24.
 
8.
Lai Z-P, Brückner H, 2008. Effects of feldspar contamination on equivalent doses and the shape of growth curves for OSL of siltsized quartz extracted from Chinese loess. Geochronometria 30: 49-53, DOI 10.2478/v10003-008-0010-0.10.2478/v10003-008-0010-0.
 
9.
Preusser F, 2003. IRSL dating of K-rich feldspars using the SAR protocol: Comparison with independent age control. Ancient TL 21: 17-23.
 
10.
R Development Core Team, 2007. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.Rproject.org.
 
11.
Visocekas R, 1988. Comparison between tunnelling afterglows following alpha and beta irradiation. Nuclear Tracks and Radiation Measurements 14: 163-166, DOI 10.1016/1359-0189(88)90058-1.10.1016/1359-0189(88)90058-1.
 
12.
Winlte AG, 1973. Anomalous fading of thermoluminescence in mineral samples. Nature 245(5421): 143-144, DOI 10.1038/245143a0.10.1038/245143a0.
 
13.
Zimmerman DW, 1971. Thermoluminescence dating using the fine grains from pottery. Archaeometry 13(1): 29-52, DOI 10.1111/j.1475-4754.1971.tb00028.x.10.1111/j.1475-4754.1971.tb00028.x.
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top