RESEARCH PAPER
Upper Cretaceous volcanoclastic deposits from the Haţeg basin, south Carpathians (Romania): K-Ar ages and intrabasinal correlation
 
More details
Hide details
1
Mass Spectrometry Laboratory, Institute of Physics, 20-031, Lublin, Poland
 
2
Department of Mineralogy, Studienzentrum Naturkunde, Universalmuseum Joanneum, Weinzöttlstrasse 16, A-8045, Graz, Austria
 
3
Department of Geology and Paleontology, University of Bucharest, Bd. N. Bălcescu 1, RO-010041, Bucharest, Romania
 
 
Online publication date: 2011-03-20
 
 
Publication date: 2011-06-01
 
 
Geochronometria 2011;38(2):182-188
 
KEYWORDS
ABSTRACT
In order to constrain the age of the Upper Cretaceous continental Densuş-Ciula Formation from the Haţeg basin, South Carpathians, and correlate it with the other continental unit that occurs in the region, the Sânpetru Formation, we separated and dated by the K-Ar method biotites and amphiboles from volcanoclastic deposits. The mineral phases analysed are from two tuff layers and volcanic bombs cropping out near Rachitova village. Two tuff layers from the Densuş-Ciula Formation give early Maastrichtian ages of 69.8±1.3 and 71.3±1.6 Ma, respectively. The ages determined for the tuff layers constrain the age of deposition for the Densuş-Ciula Formation and enable further correlations with the available palaeomagnetic data from the deposits occurring along the Sibişel Valley that belong to the Sânpetru Formation. The volcanic bombs collected near to Răchitova village are andesites and dacites. The age determined by K-Ar method on hornblende separated from a volcanic bomb is 82.7±1.5 Ma, which is older than the underlying Campanian marine deposits in turbidite facies. This suggests that the volcanic bombs were re-deposited during the early Maastrichtian. Thus, the volcanics found at Răchitova have at least two origins: one type is related to an explosive synsedimentary volcanic activity, and the other type is represented by older andesitic/dacitic bombs, which most probably originate from a volcanic centre situated in the Haţeg region.
 
REFERENCES (37)
1.
Anastasiu N and Csobuka D, 1989. Non-marine uppermost Cretceous deposits from the Stei-Densuş Region (Haţeg Basin): sketch for a facies model. Revue de Geologie Academia Romana 35: 45–53.
 
2.
Andrei I, Cristescu T, Calotă C, Proca A, Romanescu D, Russo-Săndulescu D, Ştefan A, Suceavă M, Bradu M, Hannich D and Al-boiu M, 1989. Spatial distribution and structural images of banatites from Romania, deduced from gravity and magnetic data. Revue Roumaine de Géologie, Géophysique et Géographie - Série de Géophysique 33: 79–85.
 
3.
Antonescu E, Lupu D and Lupu M, 1983. Correlation palinologique du Crétacé terminal du sud-est des Monts Metaliferi et des Depressions de Haţeg et de Rusca Montană (Palinological correlation of the Upper Cretaceous from the south-east Metaliferi Mountains and Hateg basin). Annales de l’Institut de Géologie et Géophysique 59: 71–77 (in French).
 
4.
Barzoi S and Seclaman M, 2010. Petrographic and geochemical interpretation of the Late Cretaceous volcaniclastic deposits from the Haţeg Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 293(3–4): 306–318, DOI 10.1016/j.palaeo.2009.08.028. http://dx.doi.org/10.1016/j.pa....
 
5.
Berza T, Constantinescu E and Vlad Ş-N, 1998. Upper Cretaceous Magamatic Series and Associated Mineralisation in the Carpathi-an-Balkan Orogen. Resource Geology 48(4): 291–306, DOI 10.1111/j.1751-3928.1998.tb00026.x. http://dx.doi.org/10.1111/j.17....
 
6.
Bojar A-V, Grigorescu D, Ottner F and Csiki Z, 2005. Paleoenvironmental interpretation of dinosaur- and mammal-bearing continental Maastrichtian deposits, Haţeg basin, Romania. Geological Quarterly 49: 205–222.
 
7.
Bojar A-V, Ottner F, Bojar H-P, Grigorescu D, Persoiu A, 2009. Stable isotope and mineralogical investigations on clays from Late Cretaceous sequences, Haţeg Basin, Romania. Applied Clay Sciences 45(3): 155–163, DOI 10.1016/j.clay.2009.04.005. http://dx.doi.org/10.1016/j.cl....
 
8.
Bojar A-V, Bojar H-P, Ottner F and Grigorescu D, 2010a. Heavy mineral distributions of Maastrichtian deposits from the Haţeg basin, South Carpathians: tectonic and palaeogeographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 293(3–4): 319–328, DOI 10.1016/j.palaeo.2009.10.002. http://dx.doi.org/10.1016/j.pa....
 
9.
Bojar A-V, Csiki Z and Grigorescu D, 2010b. Stable isotope distribution in Maastrichtian vertebrates and paleosols from the Haţeg Basin, South Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology 293(3–4): 329–342, DOI 10.1016/j.palaeo.2009.08.027. http://dx.doi.org/10.1016/j.pa....
 
10.
Bralower TJ, Leckie RM, Sliter WV and Thierstein HR, 1995. An integrated Cretaceous microfossil biostratigraphy. In: Berggren WA, Kent DV, Aubry M-P and Hardenbol J, eds., Geochronology, Time Scales, and Global Stratigraphic Correlation. SEPM, Special Publication 54: 65–79.
 
11.
Burnett JA, 1998. Upper Cretaceous. In: Bown PR, ed., Calcareous Biostratigraphy. British Micropalaeontological Society, Publication Series: 132–199.
 
12.
Ciobanu CL, Cook NJ and Stein H, 2002. Regional setting and geochronology of the Late Cretaceous Banatitic Magmatic and Metallogenetic Belt. Mineralium Deposita 37: 541–567. http://dx.doi.org/10.1007/s001....
 
13.
Chung FR, 1974a. Quantitative Interpretation of X-ray Diffraction Patterns of Mixtures. I. Matrix-Flushing Method for Quantitative Multicomponent Analysis. Journal of Applied Crystallography 7(6): 519–525, DOI 10.1107/S0021889874010375. http://dx.doi.org/10.1107/S002....
 
14.
Chung FR, 1974b. Quantitative Interpretation of X-ray Diffraction Patterns of Mixtures. II. Adiabatic Principle of X-ray Diffraction Analysis of Mixtures. Journal of Applied Crystallography 7(6): 526–531, DOI 10.1107/S0021889874010387. http://dx.doi.org/10.1107/S002....
 
15.
Chung FR, 1975. Quantitative Interpretation of X-ray Diffraction Patterns of Mixtures. III. Simultaneous Determination of a Set of Reference Intensities. Journal of Applied Crystallography 8(1): 17–19, DOI 10.1107/S0021889875009454. http://dx.doi.org/10.1107/S002....
 
16.
Cox A and Dalrymple GB, 1967. Statistical analysis of geomagnetic reversal data and the precision of potassium-argon dating. Journal of Geophysical Research 72: 2603–2614. http://dx.doi.org/10.1029/JZ07....
 
17.
Durakiewicz T, 1995. Innowacje w aparaturze do wydzielania i oczyszczania argonu (Improvements in the argon extraction and purification line). In: Durakiewicz T, ed., Dating of Minerals and Rocks II. Wydawnictwo PTF Lublin: 44–52 (in Polish).
 
18.
Grigorescu D, 2010. The Latest Cretaceous fauna with dinosaurs and mammals from the Haţeg Basin - A historical overview. Palaeogeography, Palaeoclimatology, Palaeoecology 293(3–4): 271–282, DOI 10.1016/j.palaeo.2010.01.030. http://dx.doi.org/10.1016/j.pa....
 
19.
Grigorescu D and Melinte M, 2001. The stratigraphy of the Upper Cretaceous marine sediments from the NW Haţeg area (South Carpathians, Romania). Acta Palaeontologica Romaniae 3: 153–160.
 
20.
Grigorescu D, Avram E, Pop G, Lipu M and Anastasiu N, 1990. Guide to excursion. International Symposium IGCP Projects 245: Nonmarine Cretaceous Correlation; Project 282: Tethyan Cretaceous Correlation, Bucharest: 109 pp.
 
21.
Grigorescu D, Garcia G, Csiki, Z, Codrea V and Bojar A-V, 2010. Uppermost Cretaceous megaloolithid eggs from the Haţeg Basin, Romania, associated with hadrosaur hatchlings: Search for explanation. Palaeogeography, Palaeoclimatology, Palaeoecology 293(3–4): 360–374, DOI 10.1016/j.palaeo.2010.03.031. http://dx.doi.org/10.1016/j.pa....
 
22.
Grünfelder M, Popescu G, Soroiu M, Arsenescu V and Berza T, 1983. K-Ar and U-Pb dating of the metamorphic Formations and the associated igneous bodies of the central South Carpathians. Annales de l’Institut de Géologie et Géophysique 61: 37–46.
 
23.
Hałas S, 2001. Analiza pierwiastkowa techniką rozcieńczenia izotopowego na przykładzie określania zawartości potasu w minerałach datowanych metodą K/Ar (Elemental analysis by isotope dilution technique on the example of %K determination in minerals to be dated by K/Ar method). Elektronika 42(8–9): 53–55 (in Polish).
 
24.
Lewy Z and Odin GS, 2001. Magnetostratigraphy across the Campanian-Maastrichtian boundary at Tercis les Bains in comparison with northern Germany, the Apennines (Central Italy) and North America: biostratigraphical and geochronological constraints. In: Odin G, ed., The Campanian-Maastrichtian Stage Boundary; Characterisation at Tercis les Bains (France) and Correlation with Europe and Other Continents. Amsterdam, Elsevier Science BV: 175–183. http://dx.doi.org/10.1016/S092....
 
25.
Le Maitre RW, Streckeisen A, Zanetti B, Le Bas MJ, Keller J, Lamayre J, Sabine PA, Schmid R, Sorensen H and Wooley AR, 2004. Igneous rocks: a classification and glossary of terms. Cambridge University Press, Cambridge, 236 pp.
 
26.
Lindfors, SM, Csiki Z, Grigorescu D and Friis, EM, 2010. Preliminary account of plant mesofossils from the Maastrichtian Budurone microvertebrate site of the Haţeg Basin, Romania. Palaeogeography, Palaeoclimatology, Palaeoecology 293(3–4): 353–359, DOI 10.1016/j.palaeo.2009.10.018. http://dx.doi.org/10.1016/j.pa....
 
27.
Lupu D and Lupu M, 1983. Biostratigraphische und fazielle Merkmale der “GosauFormation” im Apuseni Gebirge (Biostratigraphy and facies of the „Gosau Formation“, Apuseni Mountains). Anuarul Institutului de Geologie şi Geofizică 59: 95–100 (in German).
 
28.
Melinte MC and Odin G, 2001. Optical studies of the calcareous nannofossils from Tercisles Bains (Landes, SW France) at the Campanian-Maastrichtian Boundary. In: Odin G, ed., The Campanian-Maastrichtian Stage Boundary; Characterisation at Tercis les Bains (France) and Correlation with Europe and Other Continents. Amsterdam, Elsevier Science BV: 101–117.
 
29.
Melinte-Dobrinescu, M.C., 2010. Lithology and biostratigraphy of Upper Cretaceous marine deposits from the Haţeg region (Romania): palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology 293(3–4): 283–294, DOI 10.1016/j.palaeo.2009.04.001. http://dx.doi.org/10.1016/j.pa....
 
30.
Panaiotu CG and Panaiotu CE, 2010. Palaeomagnetism of the Upper Cretaceous Sânpetru Formation (Haţeg Basin, South Carpathians). Palaeogeography, Palaeoclimatology, Palaeoecology 293(3–4): 343–352, DOI 10.1016/j.palaeo.2009.11.017. http://dx.doi.org/10.1016/j.pa....
 
31.
Scott RW, 2009. Chronostratigraphic database for Upper Cretaceous oceanic red beds (CORBS). In: Hu X, Wang C, Scott RW, Wagreich M and Jansa L, eds., Cretaceous oceanic red beds: stratigraphy, composition, origins, and paleoceanographic and paleoclimatic significance. SEPM (Society for Sedimentary Geology) Special Publication 91: 35–57.
 
32.
Stilla Al, 1985. Geologie de la region de Haţeg-Cioclovina-Pui-Băniţa (Carpathes Meridionales) (Geology of the Haţeg-Cioclovina-Pui-Băniţa). Annales de l’Institut de Géologie et Géophysique 66: 91–179 (in French).
 
33.
Streckeisen A, 1964. Die Klassifikation der Eruptivgesteine (The classification of volcanic rocks). Neues Jahrbuch für Mineralogie: 195–222 (in German).
 
34.
Streckeisen A, 1976. To each plutonic rock its proper name. Earth Science Reviews 12(1): 1–33, DOI 10.1016/0012-8252(76)90052-0. http://dx.doi.org/10.1016/0012....
 
35.
Wagreich M and Faupl P, 1994. Palaeogeography and geodynamic evolution of the Gosau Group of the Northern Calcareous Alps (Late Cretaceous, Eastern Alps, Austria). Palaeogeography, Palaeoclimatology, Palaeoecology 110(3–4): 235–254, DOI 10.1016/0031-0182(94)90086-8. http://dx.doi.org/10.1016/0031....
 
36.
Willingshofer E, 2000. Extension in collisional orogenic belts: the Late Cretaceous evolution of the Alps and Carpathians. PhD Thesis, Vrije Universiteit, Amsterdam: 146 pp.
 
37.
Zimmerman A., Stein HJ, Hannah JL, Koželj D, Bogdanov K, Berza T, 2008. Tectonic configuration of the Apuseni-Banat—Timok-Srednogorie belt, Balkans-South Carpathians, constrained by high precision RE-OS molybdenite ages. Mineralium Deposita 43: 1–21. http://dx.doi.org/10.1007/s001....
 
eISSN:1897-1695
ISSN:1733-8387
Journals System - logo
Scroll to top